
JavaScript Agent Machine (JAM) 1

A. Agent Input-Ouput System (AIOS)

A.1 Agent Class Template

Agents are created from constructor functions providing an ATG behaviour
template, shown in Def. 1.

function agentclass(p1,p2..) {
Body Variables

this.v1 = initial value
this.v2 = initial value
Activtites

this.act = {
a1: function () { .. },
a2: function () { .. },
..

}
Activity Transitions

this.trans = {
a1: anext,
a2: function () { return anext },
..

}
Signal Handler

this.on = {
signal: function (arg) { .. },
..

}
Current and Initial Activity

this.next = ainit
}

Definition 1. Basic structure of an agent class constructor function

Agent Input-Ouput System (AIOS) Agent Class Template

JavaScript Agent Machine (JAM) 2

A constructor function defines a set of parameters, body variables, activity
and transition function objects, an optional signal handler function object,
and the reserved next body variable pointing to the current (or after a start
the initial) activity.

A.2 AgentJS API

The following sections describe the agent programming interface of
AgentJS. The operations visible to agents depend on their privilege level.
Operations restricted to privilege levels are marked.

A.3 Computation

There are various powerful and extended computational functions that can
be used by agents. Please note that for some reason arrays and objects
cannot be iterated in agent processes by using the for(p in a) state-
ment. Instead the iter function has to be used. Furthermore, the this
object inside function callbacks references always the agent object, i.e.,
body variables and functions can be accessed by the this object.

A.3.1 Operations

abs

function(number) → number

Returns absolute value of number.

add

function(a:number|array|object,
b:number|array|object) → number|array|object

General purpose addition operation for scalar numbers, arrays, and objects
of numbers.

iter

function(object|array, function (@element,@index?))

Agent Input-Ouput System (AIOS) Computation

JavaScript Agent Machine (JAM) 3

Iteration over object attributes or array elements.

concat

function(array|string|object, array|string|object)
→ array|string|object

Concatenation operation for arrays, strings, and objects.

contains

function(array|object,
(number|string)|(number|string)[]) → boolean

Checks existence of an element or an array of elements in an array or ob-
ject (attribute)

copy

function(array|object|string) →
array|object|string

Returns a copy of an array, object, or string. The object may not contain
cyclic references.

div

function(number,number) → number

Integer division operation

empty

function(array|object|string) → boolean

Checks if an object, string, or array is empty ({} [] "")

equal

function(number|string|array|object,
number|string|array|object) → boolean

Checks equality of numbers, strings, arrays, and objects.

filter

function(array|object, function (@element,@index?)
→ boolean) → array|object

Agent Input-Ouput System (AIOS) Computation

JavaScript Agent Machine (JAM) 4

Filter operation for arrays and objects.

head

function(array) → *

Returns head (first) element of array.

int

function(number) → number

Returns integer number.

isin

function(array|object,
number|string|(number|string)[]) → boolean

Checks existence of an element in an array or object (attribute). The ele-
ment can be an array, too.

iter

function(array|object, function (@element,@index?))

Iterator for arrays and objects.

length

function(array|object|string) → number

Returns length of an array, object or string.

map

function(array|object, function (@element,@index?)
→ *|none) → array|object

Map and filter operation for arrays and objects. If the user function returns
undefined the element is discarded.

matrix

function(@cols, @rows, @init) → [] array

Create a matrix (array of arrays).

Agent Input-Ouput System (AIOS) Computation

JavaScript Agent Machine (JAM) 5

max

function(a:number|array, b?:number) → number

Returns largest number from two numbers or from array of numbers.

min

function(a:number|array, b?:number) → number

Returns smallest number from two numbers or from array of numbers.

neg

function(number|array|object) →
number|array|object

Returns negative number, array or object of numbers.

random

function(a:number|array|object, b?:number,
frac?:number) → number|*

Returns a random number from the interval [a,b] or an element from an
array or object. The optional fraction parameter specified the rounding pre-
cision (frac=1 return integer numbers).

reverse

function(array|string) → array|string

Reverses elements of an array or string.

sort

function(array, function (@element1,@element2) →
number) → array

Sorts an array by a user function returning {-1,0,1} numbers. Descending
order is reached if a<b return a positive value, otherwise if a negative
value is returned an ascending order is reached.

sum

function(array|object, map?:function) → number

Returns the sum of elements of an array or attribute values of an object.
The optional user mapping function can be used to return a computed

Agent Input-Ouput System (AIOS) Computation

JavaScript Agent Machine (JAM) 6

value for each element.

string

function(*) → string

Returns string representation of argument.

tail

function(* array) → *

Returns tail (last) element of array.

zero

function(number|array|object) → boolean

Checks if a number, all elements of an array or all attributes of an object
are zero.

A.3.2 Examples

this.a=[1,2,3];
this.o={real:2.0,img:3.1};
this.sq = function (objORarray) {
var res=0;
iter(objORarray,function (elem,index) {

res=res+elem*elem;
});
return res;

}
..

var x,y,z;
x=this.sq(a); // x==14
y=this.sq(o); // y==13.61
z=sum(a); // z==6
if (zero(this.o)) this.o={real:1.0,img:1.0};

..

Usage of computational functions and user defined functions assigned to
agent body variables.

Agent Input-Ouput System (AIOS) Computation

JavaScript Agent Machine (JAM) 7

A.4 Environment

info

function (@kind) → {}

Return environmental information. Supported information requests are:

typeof @kind = ’node’ | ’version’ | ’host’

The node information request returns:

{id : id string,
position : {x:number, y:number},
location : undefined | {lat:number, lon:number},
type : string}

The node type is a string identifier from the set:

typeof type = {’shell’, ’webshell’, ’relay’,
’webapp’, ’mobileapp’}

The host information request returns information about the host platform:

{type:string=’node’ | ’browser’}

myClass

function () → string

Returns the class of the agent (if known). Same result is returned by ac-
cessing the this.ac variable.

myNode

function () → string

Returns the identity name of the current JAM node.

myParent

function () → string

Returns the identity name of the parent agent of this agent (if any).

Agent Input-Ouput System (AIOS) Environment

JavaScript Agent Machine (JAM) 8

me

function () → string

Returns the identity name of this agent.

clock

function (ms:boolean) → number|string

Returns current system clock in milliseconds (ms argument is true) or in
time format HH:MM:SS.

A.5 Tuple Space

Tuple spaces are data bases storing vectors of values. Each tuple has a di-
mension (the number of values) and a type interface. Tuples can be read
or consumed by using patterns. Patterns are like tuple but allowing wild-
card values (none). If there is no matching tuple found in the data base,
the agent is suspended until a matching tuple arrives or a timeout occurs
(by using the try_* operations). Since JavaScript programs cannot block,
a callback function has to be provided and the blocking operation must be
placed at the end of an activity or inside a scheduling block. Commonly
the first value of a tuple (a string) is used as a key, but this is only a weak
constraint that has not to be satisfied. If the first value is a string it is used
as a hash key in the tuple data base speeding up tuple pattern matching.
A tuple space has a linear structure and is non-persistent. To support com-
plex hierarchical data bases, JAM provides a SQLite data base server and
access to this data base for level 3 agents (see section A.13____). Tuple spaces
can be mapped on tables in this SQL data base (by tuple space provider
and consumer functions passed to JAM).

A.5.1 Types

type tuple =
(number|string|boolean|array|object) []

type pattern =
(number|string|boolean|array|object|null) []

Agent Input-Ouput System (AIOS) Tuple Space

JavaScript Agent Machine (JAM) 9

A.5.2 Examples

out([’MARKING1’,1]);
out([’SENSORA’,100,true]);
inp([’SENSORA’,_,_],function (tuple) {

if (tuple) this.s =tuple[1];
});
rm([’SENSORA’,_,_],true);
try_rd(0,function (tuple) { .. });
ts([’MARKING’,_],function (t) { t[1]++ });
alt([

[’SENSORA’,_,_],
[’SESNORB’,_],
[’EVENT’],
],function (tuple) {

if (tuple && tuple[0]==’EVENT’) {..}
else ..

});

Example 2. Tuple Access

A.5.3 Operations

alt1,2,3

function(pattern [], callback:function,
all?:boolean, tmo?:number)

Input operation with multiple search patterns that can have different type
signatures and arities. The first tuple matching one of the pattern is con-
sumed and passed to the callback function. If there are multiple tuples
matching a specific pattern and the flag is set than all matching tuples are
consumed and returned.

collect1,2,3

function (to:path, pattern) → number

The collect operation moves tuples from this source TS that match tem-
plate pattern into destination TS specified by path to (a node destination).

Agent Input-Ouput System (AIOS) Tuple Space

JavaScript Agent Machine (JAM) 10

copyto1,2,3

function (to:path, pattern) → number

Copies all matching tuples form this source TS to a remote destination TS
specified by path to (a node destination).

evaluate1,2,3

function (pattern, callback:function (tuple|none))
→ tuple

Access an evaluator tuple created by a listen operation. The evaluator
evaluates the given pattern to a tuple and passes the tuple back to the call-
back function of the requesting agent.

exists1,2,3

function (pattern) → boolean

Check if a tuple matches the given patterns.

inp1,2,3

function (pattern, callback:function, all?:boolean,
tmo?:number)

Consumes a tuple matching the given pattern that is passed to the callback
function. If there are multiple tuples matching a specific pattern and the
all flag is set than all matching tuples (array) are consumed and re-
turned. If there is no matching tuple and tmo is zero (immediate reply) or
positive (timeout) than the callback handler is called with a none value ar-
gument.

listen1,2,3

function (pattern, callback:function (pattern) →
tuple)

Install a tuple evaluator (active tuple) that can be accessed by the evalu-
ate operation.

out1,2,3

function (tuple)

Store a tuple in the data base.

Agent Input-Ouput System (AIOS) Tuple Space

JavaScript Agent Machine (JAM) 11

mark1,2,3

function (tuple, tmo:number)

Store a tuple with a limited lifetime in the data base.

rd1,2,3

function (pattern, callback:function, all?:boolean,
tmo?:number)

Read a tuple matching the given pattern that is passed to the callback
function. If there are multiple tuples matching a specific pattern and the
all flag is set than all matching tuples (array) are read. If there is no
matching tuple and tmo is zero (immediate reply) or positive (timeout)
than the callback handler is called with a none value argument.

rm1,2,3

function (pattern, all?:boolean)

Remove a tuple or if the all flag is set all matching tuples from the data
base.

store1,2,3

function (to:path, tuple) → number

Stores a tuple in a remote TS specified by path to (a node destination).
Returns number of stored tuples.

ts1,2,3

function (pattern, callback:function(tuple) →
tuple)

Atomic and non-blocking test-and-set operation that can be used to modify
a tuple in place found based on the provided pattern.

alt.try, inp.try, rd.try, evaluate.try1,2,3

function (tmo:number, ..)

Try operation and execute an alternation, input, or read operation with a
given timeout (Milliseconds). If there was no matching tuple found and
the timeout elapsed the callback is fired with a null argument, fol-
lowed by the continuation of the agent execution with the next activi-
ty.

Agent Input-Ouput System (AIOS) Tuple Space

JavaScript Agent Machine (JAM) 12

rd.try(timout,tuple,function (t) {
if (t) this.data=t,log(’GOTIT’);
else log(’DONT GOTIT’);

})

A.5.4 Active Tuples

Passive tuples are produced via the out operation and consumed via the
rd and inp operations. Among passive tuples, there are active tuples that
are evaluated by a consumer and passed back to the original producer (bi-
directional tuple exchange) by using the listen and evaluate opera-
tions.

listen(pattern, function (tuple) {
Modification of tuple: Replace formal
with actual parameters
return tuple’

})
evaluate(pattern, function (tuple) {

Process evaluated tuple
})

Definition 3: Active Tuple Template

A.6 Signals

Signals are used as a low-level inter-agent communication. In contrast to
tuple, signals can be send directly to specific agents. Although there are
remote tuple space operations, signals should be used for remote agent
communication. Signals can carry an argument (data). The delivery of sig-
nals is only reliable if the source and destination agents are processed on
the same platform node. If the destination agent is processed on a remote
platform the signals are delivered as messages to the destination node
along the travel path of the destination agent.

There is no agent localisation, and only agent traces are used to deliver a
signal to a remote agent, i.e., each node remembers the direction/link an
agent used to migrate to another node. Therefore, remote signals can only

Agent Input-Ouput System (AIOS) Signals

JavaScript Agent Machine (JAM) 13

be send to agents that were previously processed on the node of the source
agent! To enable back propagation of signals, each node remembers the
direction/link of incoming signals and its source agent, too. The entries of
these trace caches have a timeout and are removed automatically. Each
time a signal is propagated along the trace path of an agent, the cache
entries of all path nodes are refreshed. After a timeout of a trace cache
entry, signals cannot be delivered to an agent along a path using this node!

A signal can be received by an agent by installing a signal handler in the
this.on section of the agent class.

The destination agent is specified by the agent identifier. Usually agent
identifiers should not made be public for security reasons (An agent at
least with privilege level 1 can control another agent on the same node if
it knows its agent identifier). Hence, signals are often used between
parent-child agents. Each child knows the agent identifier of its parent, and
vice versa.

Signals should carry only simple arguments. Objects may not contain cy-
clic references. Complex data structures should only be exchanged
between agents by using the tuple space.

A.6.1 Template

The following code template shows agent communication via signals
between a parent and its created child agents (using forking). The child
agent is created in activity a1. After the agent process forking, both agents
continue with activity a2.

// Template
this.child=none;
this.act = {

a1: function () {
// Create child agent
this.child=fork();

}
a2: function () {
// Raise signal
if (this.child)
send(this.child,’PARENT’,’Hello World’);

}

Agent Input-Ouput System (AIOS) Signals

JavaScript Agent Machine (JAM) 14

}
this.trans = {

a1:a2
}
// Installation of signal handlers
this.on : {

’PARENT’ : function (arg,from) {
log(’Got message ’+arg+’ from ’+from);

}, ..
}

A.6.2 Types

// Type definitions
type aid = string
type range =

hops:number |
region:{dx:number,dy:number,..}

A.6.3 Operations

send1,2,3

function (to:aid, sig:string|number, arg?:*)

Sends a signal @sig (string or number) to an agent with identification
string @to with an optional argument @arg.

broadcast1,2,3

fucntion (class:string, range, @sig, @arg?)

Broadcasts a signal to multiple agents of class @class with the specified
range.

sendto1,2,3

function (to:dir, sig:string|number, arg?:*)

Sends a signal @sig (string or number) to a remote node specified by
@to with an optional argument @arg. If there is an agent on the remote

Agent Input-Ouput System (AIOS) Signals

JavaScript Agent Machine (JAM) 15

node handling the specific signal it will be passed to the listening agent.

sleep

function (tmo:number)

Suspends an agent for a specific time. If @tmo is zero, the agent is
suspended until it will be woken up by another agent using the wakeup
operation.

wakeup

function (aid?:string)

Wakes up a sleeping agent. Can be called from within an signal handler. If
@aid is undefined, the agent calling wakeup will be woken up (if
suspended).

timer.add

function (tmo:number, sig:string, arg:*,
repeat:boolean) → string

Adds and start a new timer that raises the signal sig after timeout. Re-
turns a timer identifier.

timer.delete

function (sig:string)

Deletes a timer referenced by the identifier returned from timer.add.

A.7 Agent Control

Agents can be instantiated from an agent class template (previously loaded
into the platform) by using the create operation with parameter initiali-
sation. Agent class parameters must be passed immediately to agent body
variables. They are not accessible during run-time!The agent class ac
must be loaded previously as an agent class template and is provided by
the platform. Alternatively, the agent class can be a sub-class of the
current agent.

Furthermore, agents can be forked from the current agent process inherit-
ing the entire data and control state including the current agent behaviour
(activities, transitions, ..). Specific body variables of the forked agent can

Agent Input-Ouput System (AIOS) Agent Control

JavaScript Agent Machine (JAM) 16

be overridden by the attributes of the settings object passed on the fork
call. Forking discards all current scheduling blocks, in contrast to
migration!

A newly created agent is identified by a (node) unique identifier string
(commonly 8 characters) that is returned by the create and fork operations.

At least privilege level 1 is required to use these operations.

A.7.1 Agent Creation Operations

create1,2,3

function (ac:string, [arg1,arg2,..], level?:number)
→ aid

function (ac:string, {arg1:*,arg2:*,..},
level?:number) → aid

Creates a new agent from agent class ac with the given set of arguments.
The agent constructor function ac must be available on the platform.
Agent class arguments are passed to agent class parameters during the
creation or forking process. Arguments can either be passed in an array
matching parameters in the order they are defined, or by using an argu-
ment object with arbitrary parameter order. Optionally the privilege level
of the new agent can be specified, otherwise the new agent inherits the
level of the creating agent. The highest level is limited to the level of the
creating agent! The initial activity executed by the newly created agent is
specified by the constructor function in the next attribute.

fork1,2,3

function (parameter:{var1:*, var2:*,..},
level?:number) → aid

Forks a copy of the current agent process inheriting the entire data and
control state of the parent agent. The new child agent can reference its
parent agent by the this.parent attribute or by using the myParent
function. The child agent body variables var1, var2, .. passed by
the parameters object are overridden on forking with the given values.
Note that agent class parameters cannot be accessed after the creation of
an aent. The next activity executed after the fork is either computed by the
current transition entry or by a next variable override by the parameter
object.

Agent Input-Ouput System (AIOS) Agent Control

JavaScript Agent Machine (JAM) 17

Example

id = create(’explorer’,{dir:DIR.NORTH,radius:1});
child = fork({x:10,y:20});
kill(child);

Among the creation and destruction of agents, the agent behaviour can be
modified by agents by adding, deleting, or updating of transitions and ac-
tivities (modification of the ATG). Only whole activities can only be
changed and not code parts. There are two objects accessible by agents
providing modification operations: act and trans. ATG transformations
can be temporarily, e.g., used to create child agents with different or re-
duced behaviour.

A.7.2 Agent Behaviour Operations

act.add

function (act:string, code:function)

Adds a new activity @act with the given code to the current agent object.

act.delete

function (act:string)

Deletes activity @act from the current agent object.

act.update

function (act:string, code:function)

Updates code of activity @act of the current agent object.

trans.add

function (trans0:string, code:function|string)

Adds a new transition starting from activity @trans0 with the given code
to the current agent object.

trans.delete

function (trans0:string)

Agent Input-Ouput System (AIOS) Agent Control

JavaScript Agent Machine (JAM) 18

Deletes a transition from activity @trans0 from the current agent object.

trans.update

function (trans0:string, code:function|string)

Updates code of transition starting from activity @trans0 of the current
agent object.

Example

this.act = {
a1: function () {..},
a2: function () {

act.delete(a1); trans.delete(a1);
act.add(’b1’, function () {
this.sensor=[]; ..});

trans.update(a2, function () {
return this.sensor.length>0?b1:a3 });

},
a3: ..
..

};
this.trans = {

a1: a2,
a2: a3,
a3: ..

}

A.8 Process Control

The main control flow of and agent is related to the ATG and (conditional)
transitions itself. An agent can call blocking statements within an activity.
A blocked activity stops agent execution until an event occurs. But signal
handlers can be still executed even the agent is in a blocked state. Among
external suspend-wakeup control, the agent itself can suspend and resume
its execution explicitly by the following operations. Blocking statements
may only occur at the end of an activity (or at least there may be only one
blocking statement in one activity).

Agent Input-Ouput System (AIOS) Process Control

JavaScript Agent Machine (JAM) 19

sleep

function (millisec?:number)

Suspend agent execution (current activity) for a specific amount of time
(milli seconds resolution) or until a wakeup operation (from within a sig-
nal handler) is executed.

wakeup

function (process?)

Wake up a sleeping (suspended) agent process.

A.9 Agent Mobility

Agent processes can migrate to another physical or logical node by
transferring its current control and data snapshot via a message over a
transport channel. The destination (specified by the transport channel) is
selected by a direction DIR. If the moveto operation is executed at the
end of an activity or the current scheduling block is empty after migration,
the next activity is computed after migration on the new JAM node.

If a migration to a specific host or in a specific direction is not possible, a
MOVE exception is thrown.

A.9.1 Types

enum DIR = {
NORTH , SOUTH , WEST , EAST ,
LEFT , RIGHT , UP , DOWN,
ORIGIN ,
NW , NE , SW , SE ,
PATH (path:string),
IP (ip:string),
NODE (node:string),
CAP (cap:string|capability)

} : dir

Agent Input-Ouput System (AIOS) Agent Mobility

JavaScript Agent Machine (JAM) 20

A.9.2 Operations

moveto1,2

function (to:dir)

Migrates current agent to a new node specified by the destination @to.

opposite

function (dir) → dir

Returns the opposite (back) direction (if any) of the given direction. E.g.,
opposite of NORTH is SOUTH. In the case of IP links and migration the
opposite operation can return the IP address or the node name of the last
node, i.e., opposite(DIR.IP()) and opposite(DIR.NODE()),
respectively.

link

function (dir) → boolean|string|[]

Tests a link direction. Should be used prior to migration (migration with
not available link direction causes an exception). In the case of multi-cast
links (e.g., IP), a list of connected/reachable IPs (routes, using pattern
IP(’*’)) or Nodes (using pattern IP(’%’)) is returned.

A.9.3 Example

// Activity in agent class template
move : function () {
if (this.verbose>0) log(’Move -> ’+this.dir);
if (!this.goback) this.backdir=opposite(this.dir);
switch (this.dir) {

case DIR.NORTH: this.delta.y--; break;
case DIR.SOUTH: this.delta.y++; break;
case DIR.WEST: this.delta.x--; break;
case DIR.EAST: this.delta.x++; break;

}
if (this.dir!=DIR.ORIGIN && link(this.dir)) {
this.hop++;
moveto(this.dir);

}

Agent Input-Ouput System (AIOS) Agent Mobility

JavaScript Agent Machine (JAM) 21

}

The possible migration directions depend on the network ports available
on the agent’s current node and the established links between nodes. IP
(UDP/TCP/HTTP) links can be established between generic bidirectional
(multicast) IP ports with (DIR.IP("ip:ipport")) or between uni-
directional (uni-cast) ports, e.g., DIR.NORTH("ip:ipport")), com-
monly connected to a South port on the remote endpoint given by
DIR.SOUTH("ip:ipport")), respectively . Generic IP ports can
spawn arbitrary mesh grids. Alternatively, a destination node can be
specified, i.e., DIR.NODE(nodeid).

After an agent migration, the agent can retrieve its backpropagation direc-
tion, i.e., last node identifier or IP address by using the
opposite(DIR.NODE()) and opposite(DIR.IP()) operations,
respectively.

function mi(dest){
this.src=null;
this.dest=dest;
this.act={

init:function () {
log(’Starting on ’+myNode())},

goto: function () {
log(’Going to ’+DIR.print(this.dest));
if (link(this.dest)) moveto(this.dest);
else log(’No route’)},
goback: function () {
this.src=opposite(DIR.NODE());
log(’Going back to ’+DIR.print(this.src));
moveto(this.src)},

end: function () {
log(’End’); kill() }

}
this.trans={

init:goto, goto:goback, goback:end
}
this.next=init

}

Example. Agent forward and backward migration between two nodes

Agent Input-Ouput System (AIOS) Agent Mobility

JavaScript Agent Machine (JAM) 22

A.10 Security

Changing of agent privilege levels and roles requires secured capabilities.
Furthermore, agents can use capability protection to ensure authentication
and authorisation of operations.

negotiate

function (resource:string, value:*, capability?) →
boolean

Negotiate an agent constraint parameter. Level 0 and 1 agents require a
valid access capability with sufficient rights (0x80). The LEVEL resource
is the agent privilege level. Supported resources are:

typeof
@resource=’CPU’|’SCHED’|’MEM’|’TS’|’AGENT’|’LEVEL’

privilege

function () → number={0,1,2,3}

Returns the current privilege level of the agent

A.10.1 Capability

type port = string[6]
type privat = {

prv_obj : number[0..65535],
prv_rights : number[0..255],
prv_rand : port

}
type capability = {

cap_port: port,
cap_prv: privat

}

Agent Input-Ouput System (AIOS) Security

JavaScript Agent Machine (JAM) 23

A.10.2 Operations

The following capability and security functions are available.

Port

function (port_vals: numner []) → port

Creates a port (if port_vals is undefined a null port is returned).

Port.toString

function (port) → string

Returns a string representation of a port (XX:XX:XX:XX:XX)

Port.ofString

function (string) → port

Returns a port from a string representation (XX:XX:XX:XX:XX)

Port.unique

function () → port

Returns a fresh unique port from a random generator.

Private

function (obj:number, rights:number, rand:port) →
privat

Creates a private object (if obj is undefined a null private object is re-
turned).

Private.toString

function (privat) → string

Returns a string representation of a private object
(obj(rights)[XX:XX:XX:XX:XX])

Private.ofString

function (string) → privat

Returns a private object from a string representation
(obj(rights)[XX:XX:XX:XX:XX])

Agent Input-Ouput System (AIOS) Security

JavaScript Agent Machine (JAM) 24

Capability

function (port, privat) → capability

Creates a capability object (if port is undefined a null capability object is
returned).

Capability.toString

function (capability) → string

Returns a string representation of a capability object
([XX:XX:XX:XX:XX:XX]obj(rights)[XX:XX:XX:XX:XX])

Capability.ofString

function (string) → capability

Returns a capability object from a string representation
([XX:XX:XX:XX:XX:XX]obj(rights)[XX:XX:XX:XX:XX])

A.11 Connectivity

connectTo3

function connectTo(dir:dir, @options)

Connects this node to another node using a virtual or physical channel
link. Common ports are non-directed multi-cast IP ports. E.g., for connect-
ing a node IP port to another IP port of a remote agent platform, the
direction argument is DIR.IP("<ipaddr>:<ipport>") or by using
the remote node name DIR.NODE(<nodename>). Directional ports
(supporting uni-cast P2P links only) like DIR.NORTH can be connected to
another directional port by using the geometric opposite direction (in this
example using DIR.SOUTH as destination). A different situation occurs if
a directional port is established by IP communication (with an IP address
and unique IP port). In this case the source port has to be specified (!)
with the destination IP as an argument, e.g.,
DIR.NORTH("<ipaddr>:<ipport>").

Agent Input-Ouput System (AIOS) Connectivity

JavaScript Agent Machine (JAM) 25

A.12 Scheduling

There are AgentJS operations that can block the agent processing, i.e.,
suspend the agent process and synchronising with events. But the
JavaScript programming model does not support code blocking. For this
reason, agent processing can only be suspended in transitions between ac-
tivity (i.e., the activity is suspended, not the statement). Blocking
AgentJS/AIOS statements (e.g., sleep, inp, ..) have to be placed at the
end of an activity that is the only scheduling point. And there may be only
one blocking statement in an activity. To support scheduling of a sequence
of blocking statements, a scheduling block can be defined within an agent
activity (but not within a transition that may not block).

B

function(block:function [])

Defines a scheduling block that is executed after the current activity defin-
ing the block has terminated. Each element of the function array is treated
as an anonymous (sub-)activity and may contain a blocking statement.

I

function (object, next:function, block:function [],
finalize:function)

Iterates over object or array and applies the function block to each ele-
ment.

L

function (init:function, cond:function,
next:function, block:function]})

Loop block iteration with initialisation, conditional, and next computation
function.

A.13 SQL

Level 3 (stationary) agents can access or create SQLite data bases. Re-
quires either a native sqlite3 plug-in (embedded already in jx+ and pl3,
node.js requires loading of an external native module), or a pure

Agent Input-Ouput System (AIOS) SQL

JavaScript Agent Machine (JAM) 26

JavaScript implementation of the sqlite3 data base (default in JAM, relies
on emscripten C2JS cross compilation).

A.13.1 Operations

db.Database3

function (filepath:string, options?:{mode:"r" |
"r+" | "w+"}) → sqldb

Creates a new data base or opens an existing from a file. A volatile data
base can be created in memory by specifying a :memory: file path.

sqldb.createMatrix

function (matname:string, header:string | number |
boolean [], callback?:function) → boolean

Creates a new numeric matrix in the data base. The header argument pro-
vides the type interface for all rows.

sqldb.createTable

function (tblname:string, header:{},
callback?:function) → boolean

Creates a new data table in the data base. The header object specifies the
column names.

sqldb.init

function ()

Initialize the SQL data base and start server.

sqldb.insertMatrix

function (mat:string, row:[], callback?:function)
→ boolean

Insert a new row in an already created matrix

sqldb.insertTable

function (tbl:string, row:[]|{},
callback?:function) → boolean

Agent Input-Ouput System (AIOS) SQL

JavaScript Agent Machine (JAM) 27

Insert a new row in an already created table

sqldb.readMatrix

function (mat:string, callback?:function) ->
[][]|none

Read entire matrix

sqldb.readTable

method (tbl:string, callback?:function) →
{}[]|none

Read entire table

A.14 Meta Data

Revision: 26/06/2019
Author: Dr. Stefan Bosse

Agent Input-Ouput System (AIOS) Meta Data

	JavaScript Agent Machine (JAM)
	Agent Input-Ouput System (AIOS)
	Agent Class Template
	AgentJS API
	Computation
	Operations
	Examples

	Environment
	Tuple Space
	Types
	Examples
	Operations
	Active Tuples

	Signals
	Template
	Types
	Operations

	Agent Control
	Agent Creation Operations
	Agent Behaviour Operations

	Process Control
	Agent Mobility
	Types
	Operations
	Example

	Security
	Capability
	Operations

	Connectivity
	Scheduling
	SQL
	Operations

	Meta Data

