
Universität Bremen

Last mod. September 12, 2010 5:06 pm / iwk2010_c4_pres.fm / 11 pages

Hardware Synthesis of Complex System-on-Chip De-
signs for Embedded Systems Using a Behavioural
Programming and Multi-Process Model

Stefan Bosse
University of Bremen, Department of Computer Science, Workgroup Robotics,
Germany1, ISIS Sensorial Materials Scientific Centre, Germany2

15.9.2010

1
 Stefan Bosse - Hardware Synthesis of Complex System-on-Chip Designs for Embedded Systems

Overview
Goals and Questions in Embedded System Design

1. Requirements and applications of embedded systems in cyber-physical-systems
(CPS) and Sensorial Materials (SM)

2. Design of embedded systems using different system architectures and design mod-
els

3. Behaviourial modelling on programming level using a multi-process model with in-
terprocess-communication and atomic guarded actions

4. ConPro: Concurrent Programming of complex hardware and software systems
5. Abstraction of hardware blocks and access from programming level
6. Design example: SensoNET - a complete sensor network communication and data

processing unit implemented 1. in FPGA/ASIC hardware, and 2. in software

36
m

m

42mm

Sensors

Actuator

Control

Commu-
nication

Conversion
Filtering

Conversion
Filtering

=0

Message
Passing

Data
Processing

Data
Processing

Data
Processing

Data
Processing

array link_tx_proc: process[NUM_LINKS] of
begin
 reg d: logic[8];
 try begin
 always do begin
 ind <- pkt_send_queue.[#];
 d[0 to 1] <- pkt_pool_hdt.[ind].hdt_adc;
 d[2 to 3] <- pkt_pool_hdt.[ind].hdt_dsc;
 d[4 to 5] <- pkt_pool_hdt.[ind].hdt_asc;
 d[6 to 7] <- pkt_pool_hdt.[ind].hdt_type;
 off <- ind*PACKET_SIZE;
 for i = 0 to to_int(len)-1 do
 begin
 d <- pkt_pool_data.[off];
 err <- link_write(#,d);
 if err = true then raise Tx_error;
 off <- off + 1;
 end;
 pkt_discard(ind); end;
 with begin
 when Tx_error: pkt_discard(ind); end;
 end; Hardware SoC LevelConcurrent Tasks & Algorithmic Level Programming Level

??? ??? ???

2
 Stefan Bosse - Hardware Synthesis of Complex System-on-Chip Designs for Embedded Systems

Cyber-Physical-Systems (CPS) And Sensorial Materials (SM)
Cyber-Physical-Systems

n Defined by the interaction of the
system with its environment

n Tight integration of computation
and control with sensing and actu-
ation physical components

n System components: sensors, ac-
tuators, data processing, commu-
nication à application specific

n CPS must be reliable, adaptable,
easy-to-use, and low-power

n Operation defined on algorith-
mic level - requires concurrency

Sensorial Materials
n Network of smart sensor nodes
n Sensor node: sensor, electronics,

and data processing
n SM must be reliable, adaptable,

highly minaturized, and low-power

 Figure 1. ModuACT robot arm manipulator with
network of sensorial materials and actuator
joints

Sensorial Material

Joint Actuator

Strain Gauge
Sensor Network

3
 Stefan Bosse - Hardware Synthesis of Complex System-on-Chip Designs for Embedded Systems

Embedded Systems: Architectures and Design Methodologies
Architectures

n Single-processor (SP)
n Multi-processor (MP)
n System-One-Chip (SoC)
n Multi-processor System-On-Chip

(MPSoC)
n Network-On-Chip (NoC)
n Application spec. RTL System-

On-Chip
n Application spec./extensible proces-

sor systems

Design Methodologies
n Software development (C)
n Application specific: hardware-soft-

ware-co design (C,SystemC)
n Application specific: hardware de-

sign on hardware behavioural level
n Top-down / Bottom-up design flows
n Application specific: from behav-

ioural programming level to hard-
ware SoC using High-level
Synthesis

High-Level Synthesis

Concurrency

Complexity

4
 Stefan Bosse - Hardware Synthesis of Complex System-on-Chip Designs for Embedded Systems

Concurrent Programming with a Multi-Process Model
n Execution Environment: processes

executing instructions in sequential
(imperative) order à Finite State Ma-
chine

n Interaction between processes: al-
ways using global shared objects à

Interprocess-Communication (IPC)
n Interprocess-Communication = Syn-

chronization: Mutex, Semaphore, ...
n Access of shared resources is serial-

ized: guarded atomic actions
n Access of shared resources is man-

aged by a scheduler: processes
blocked untill resource is available.

n Hardware Implementation: Mapping of
processes to concurrently executing
state machines and RTL

n Software Implementation: Mapping of
processes to threads (simulated multi-
processing)

 Figure 2. Multi-Process Model [mod. CSP/Hoare]

P P P

O O

P P P

Multi-Process Model

P: Sequential Process

O: Shared Object

-: Atomic Guarded
 Action
 (Communication)

F

RTL

F

1

2

FSM

Process

queue q: int;
process a:
begin
 reg x: int;
 x <- 0;
 for i = 1 to 10
 do
 x <- x + q;
 done;
end;

F

RTL

F

1

2

FSM

Process

process b:
begin
 reg y: int;
 y <- 0;
 for i = 1 to 10
 do
 q <- y+i;
 y <- y*2;
 done;
end;

5
 Stefan Bosse - Hardware Synthesis of Complex System-on-Chip Designs for Embedded Systems

ConPro: From Concurrent Programming to Processing
Synthesis of massive parallel application specific SoC designs AND parallel soft-
ware from algorithmic & behavioural programming level

Programming Model
n Communicating Sequentail Proc-

esses
n Guarded shared objects

Concurrency Model
n Control path: concurrently execut-

ed processes
n Data path: bounded instruction

blocks
Synchronization

n Interprocess-Communication à di-
rectly implemented in hardware:
Mutex, Semaphore, Event, Timer,
Queue, ...

n Shared objects guarded by mutex
scheduler (atomic guarded ac-
cess)

Execution Model
n Process: strict sequential
n HW:Finite-State-Machine & RTL
n SW: light weighted process/thread

Objects
n Data storage: registers (CREW),

variables (RAM,EREW), ...
n Object orientated programming:

abstract objects accessed with
methods (like monitors)

Programming Language
n Imperative with data and control

statements
n Explicitly modelled parallelism
n Parameterization on block level:

synthesis, scheduling, allocation,
object parameters, ...

6
 Stefan Bosse - Hardware Synthesis of Complex System-on-Chip Designs for Embedded Systems

ConPro Synthesis
n Multi-stage synthesis flow (HW/SW*):

I. Parser, Lexer, Analysis
II. Transformations
III. Reference-Stack Scheduler & Op-

timizer
IV. Optimiziations (constant folding...)
V. Compiling of process instruction

syntax tree to linear list of μCode
(intermediate representation) us-
ing parameterizable rule sets

VI. Transformations
VII.Basicblock Scheduler & Optimizer
VIII.Compiling of state transition-

graphs from μCode, finally VHDL
n Hardware Implementation: Mapping of

processes to concurrently executing
state machines and RTL

n Software Implementation: Mapping of
processes to threads with different ab-
straction levels (high,mid,low)

 Figure 3. ConPro Synthesis with HW/SW targets

P

ConPro

P P P

O O

P P P

Multi-Process Model

P: Sequential Process

O: Shared Object

-: Atomic Guarded
 Action (Communication)

HW SW

Synthesis

HW: Hardware

SW: Software

EMI: External Module
 Interface

RTL: Register-Transfer
 Logic

FSM: Finit-State Machine
P O

O

P O

EMI

RTLRTL

RTLRTL

7
 Stefan Bosse - Hardware Synthesis of Complex System-on-Chip Designs for Embedded Systems

ConPro Programming Language: Highlights
n Execution environment is a process:

process pxyz:
begin ... end;

n Shared function blocks (process env.):
function fxyz (x:int[8])
 return (t: bool):
begin ... end;

n Data types: true bit-scaled:
int[N], logic[N], char, bool

n Product types: structures and arrays:
type s: { x: int[8]; y: int[10];};
array a: reg[10] of int[5];

n Storage objects: registers, variables
(in memory blocks), queues:
reg xyz: int[21];
var v1,v2: char in ram1;

n Exceptions try .. raise .. with

n Parameterizable block environments:
begin
end with param=value [and p2=v2..]

n Parameterizable abstract objects:
open ADT;
object o1: adt with width=10;
o1.write(x,1);

n Interprocess-communication = ab-
stract object types
open Mutex; object mu1: mutex with

scheduler=”static”;

n Control statements: branches, loops:
for i = 1 to 10 do ...
if x < y then ... else
while a = true do ...
match c with ...
z ← fxyz(1); -- Function call
mu1.lock (); -- ADTO call

8
 Stefan Bosse - Hardware Synthesis of Complex System-on-Chip Designs for Embedded Systems

ConPro: Abstracting & Interfacing of Hardware Blocks
Component Structures and Signals

n Signals are interconnection ele-
ments without a storage model

n Component Structures bind sig-
nals to a port structure

n A component structure can be used
1. to instantiate and access external
hardware, 2. to create the toplevel
hardware interface

n Signals can be used in expressions
External Module Interface EMI

n Abstraction & Interconnect of
hardware blocks to algorithmic pro-
gramming level using abstract ob-
jects and methods to access
hardware blocks.

n Hardware blocks are modelled on
hardware behaviour level (VHDL)
and meta language statements (in-
terpreted during synthesis)

n Hardware blocks are accessed by a
set of methods from programming
level, e.g. read, write, and control op-
erations

n EMI provides software models, too!

P

S S S

P P

Signal Interface

P

O O O

P P

External Module
Interface

EMI

EMI

9
 Stefan Bosse - Hardware Synthesis of Complex System-on-Chip Designs for Embedded Systems

Design Example: SensoNET

Design Example: SensoNET
n Complete application of a sensor node

in a sensor network (sensorial mat.)
n Smart and robust communication with

Simple Local Intranet Protocol SLIP

n Remote procedure call interface
(RPC, application layer)

n Data acquisition with preprocessing of
sensor signals

 Figure 4. SensoNET used in sensorial material: network of smart strain gauge sensor nodes

Node

Node

Node Node

Node

DP

COM

SEN

DP

COM

SEN

Data Processing

Communication

Sensor

(opt. Actuator)

DP

COM

SEN

DP

COM

SEN

DP

COM

SEN

DP

COM

ACT

ACT

N1 N2 N3 N4

N5 N6 N7 N8

N9 N10 N11 N12

N0

Irregular Network Topology

Twodimensional
Sensornetwork

Smart Node Architecture

36
m

m

42mm

10
 Stefan Bosse - Hardware Synthesis of Complex System-on-Chip Designs for Embedded Systems

Design Example: SensoNET

n Mapping of algorithms and massive
parallel data processing to SoC sensor
node with high-level synthesis using
ConPro: à ¶ low power · mina-
turization ¸ low latency3

n Mapping of same sources to software
(C) using ConPro, too: à ¶ interfacing
computers · test/simulation3

 Table 1. Characteristics of SensoNET implementation (HW: Hardware, SW: Software)

*R1: Sequential part of message routing in SLIP

Parameter Value
HLS source code, ConPro ∼ 4000 lines, 34 processes

30 shared objects (16 queues, 2 timers)
HW: synthesized VHDL sources ∼ 32000 lines
SW: synthesized C sources ∼ 5500 lines
HW: FPGA, Xilinx Spartan III - 1000k 11261/15360 LUT (73 %), 2925 FF
HW: ASIC, standard cell library LSI_10K ∼ 244k gates, 15k FF ≅ 2.5mm2 | 0.18μm
HW: power consumption (FPGA board) < 250mW (including analog electr.)
HW: performance benchmark R1* 82 clock cycles
SW: performance benchmark R1* 2305 unit machine instructions

11
 Stefan Bosse - Hardware Synthesis of Complex System-on-Chip Designs for Embedded Systems

Summary and Outlook
Desgin of parallel SoC

n Complex SoC systems with concur-
rency on control- and data path level
can be efficiently designed from pro-
gramming level

n The concurrent multi-process model
with interprocess-communication
and guarded atomic access of
shared resources allows designing
of complex parallel systems

n Hardware blocks are abstracted and
accessed using a method based ob-
ject-orientated programming style

Design of parallel software
n Parallel software can be synthesized

using the same synthesis frame
work and programming language

Outlook: Design of distributed systems
n From parallel to distributed systems
n Actually shared objects on hardware

level are accessed by signals à

transformation of signals to message
based communication

n Objects and processes distributed
over hardware and software compo-
nents

P

ConPro

P P P

O O

P P P

HW SW

P O

O

P

O

EMI

RTLRTL

RTLRTL

	Overview
	Cyber-Physical-Systems (CPS) And Sensorial Materials (SM)
	Embedded Systems: Architectures and Design Methodologies
	Concurrent Programming with a Multi-Process Model
	ConPro: From Concurrent Programming to Processing
	ConPro Synthesis
	ConPro Programming Language: Highlights
	ConPro: Abstracting & Interfacing of Hardware Blocks
	Design Example: SensoNET
	Summary and Outlook

