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Overview
Goals and Questions in Embedded System Design

1. Requirements and applications of embedded systems in cyber-physical-systems
(CPS) and Sensorial Materials (SM) 

2. Design of embedded systems using different system architectures and design mod-
els

3. Behaviourial modelling on programming level using a multi-process model with in-
terprocess-communication and atomic guarded actions

4. ConPro: Concurrent Programming of complex hardware and software systems
5. Abstraction of hardware blocks and access from programming level 
6. Design example: SensoNET - a complete sensor network communication and data

processing unit implemented 1. in FPGA/ASIC hardware, and 2. in software
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array link_tx_proc: process[NUM_LINKS ] of
begin
  reg d: logic[8];
  try begin
    always do begin
      ind <- pkt_send_queue.[#];
      d[0 to 1] <- pkt_pool_hdt.[ind].hdt_adc;
      d[2 to 3] <- pkt_pool_hdt.[ind].hdt_dsc;
      d[4 to 5] <- pkt_pool_hdt.[ind].hdt_asc;
      d[6 to 7] <- pkt_pool_hdt.[ind].hdt_type;
      off <- ind*PACKET_SIZE;
      for i = 0 to to_int(len)-1 do
      begin
        d <- pkt_pool_data.[off];
        err <- link_write(#,d);
        if err = true then raise Tx_error;
        off <- off + 1;
      end;
      pkt_discard(ind); end;
  with begin 
    when Tx_error: pkt_discard(ind); end;
 end; Hardware SoC LevelConcurrent Tasks & Algorithmic Level Programming Level

??? ??? ???
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Cyber-Physical-Systems (CPS) And Sensorial Materials (SM)
Cyber-Physical-Systems 

n Defined by the interaction of the
system with its environment

n Tight integration of computation
and control with sensing and actu-
ation physical components

n System components: sensors, ac-
tuators, data processing, commu-
nication à application specific

n CPS must be reliable, adaptable,
easy-to-use, and low-power

n Operation defined on algorith-
mic level - requires concurrency

Sensorial Materials
n Network of smart sensor nodes
n Sensor node: sensor, electronics,

and data processing
n SM must be reliable, adaptable,

highly minaturized, and low-power

 Figure 1. ModuACT robot arm manipulator with
network of sensorial materials and actuator
joints
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Embedded Systems: Architectures and Design Methodologies
Architectures

n Single-processor (SP)
n Multi-processor (MP)
n System-One-Chip (SoC)
n Multi-processor System-On-Chip

(MPSoC)
n Network-On-Chip (NoC)
n Application spec. RTL System-

On-Chip
n Application spec./extensible proces-

sor systems 

Design Methodologies
n Software development (C)
n Application specific: hardware-soft-

ware-co design (C,SystemC)
n Application specific: hardware de-

sign on hardware behavioural level
n Top-down / Bottom-up design flows
n Application specific: from behav-

ioural programming level to hard-
ware SoC using High-level
Synthesis 

High-Level Synthesis

Concurrency

Complexity
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Concurrent Programming with a Multi-Process Model
n Execution Environment: processes

executing instructions in sequential
(imperative) order à Finite State Ma-
chine

n Interaction between processes: al-
ways using global shared objects à

Interprocess-Communication (IPC)
n Interprocess-Communication = Syn-

chronization: Mutex, Semaphore, ...
n Access of shared resources is serial-

ized: guarded atomic actions
n Access of shared resources is man-

aged by a scheduler: processes
blocked untill resource is available.

n Hardware Implementation: Mapping of
processes to concurrently executing
state machines and RTL

n Software Implementation: Mapping of
processes to threads (simulated multi-
processing)

 Figure 2. Multi-Process Model [mod. CSP/Hoare]
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queue q: int;
process a:
begin
  reg x: int;
  x <- 0;
  for i = 1 to 10
  do
    x <- x + q;
  done;
end;
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process b:
begin
  reg y: int;
  y <- 0;
  for i = 1 to 10
  do
    q <- y+i;
    y <- y*2;
  done;
end;



5
  Stefan Bosse -  Hardware Synthesis of Complex System-on-Chip Designs for Embedded Systems

ConPro: From Concurrent Programming to Processing
Synthesis of massive parallel application specific SoC designs AND parallel soft-
ware from algorithmic & behavioural programming level

Programming Model
n Communicating Sequentail Proc-

esses 
n Guarded shared objects 

Concurrency Model
n Control path: concurrently execut-

ed processes
n Data path: bounded instruction

blocks
Synchronization

n Interprocess-Communication à di-
rectly implemented in hardware:
Mutex, Semaphore, Event, Timer,
Queue, ...

n Shared objects guarded by mutex
scheduler (atomic guarded ac-
cess) 

Execution Model
n Process: strict sequential 
n HW:Finite-State-Machine & RTL
n SW: light weighted process/thread

Objects
n Data storage: registers (CREW),

variables (RAM,EREW), ...
n Object orientated programming:

abstract objects accessed with
methods (like monitors)

Programming Language
n Imperative with data and control

statements
n Explicitly modelled parallelism
n Parameterization on block level:

synthesis, scheduling, allocation,
object parameters, ...
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ConPro Synthesis
n Multi-stage synthesis flow (HW/SW*):

I. Parser, Lexer, Analysis 
II. Transformations
III. Reference-Stack Scheduler & Op-

timizer
IV. Optimiziations (constant folding...)
V. Compiling of process instruction

syntax tree to linear list of μCode
(intermediate representation) us-
ing parameterizable rule sets

VI. Transformations
VII.Basicblock Scheduler & Optimizer
VIII.Compiling of state transition-

graphs from μCode, finally VHDL
n Hardware Implementation: Mapping of

processes to concurrently executing
state machines and RTL

n Software Implementation: Mapping of
processes to threads with different ab-
straction levels (high,mid,low)

 Figure 3. ConPro Synthesis with HW/SW targets
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ConPro Programming Language: Highlights
n Execution environment is a process:

process pxyz:
begin ... end;

n Shared function blocks (process env.):
function fxyz (x:int[8]) 
         return (t: bool):
begin ... end;

n Data types: true bit-scaled:
int[N], logic[N], char, bool

n Product types: structures and arrays:
type s: { x: int[8]; y: int[10];};
array a: reg[10] of int[5];

n Storage objects: registers, variables
(in memory blocks), queues:
reg xyz: int[21];
var v1,v2: char in ram1;

n Exceptions try .. raise .. with

n Parameterizable block environments:
begin
end with param=value [and p2=v2..]

n Parameterizable abstract objects:
open ADT;
object o1: adt with width=10;
o1.write(x,1);

n Interprocess-communication = ab-
stract object types
open Mutex; object mu1: mutex with

scheduler=”static”;                   

n Control statements: branches, loops:
for i = 1 to 10 do ...
if x < y then ... else 
while a = true do ...
match c with ...
z ← fxyz(1); -- Function call
mu1.lock (); -- ADTO call
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ConPro: Abstracting & Interfacing of Hardware Blocks
Component Structures and Signals

n Signals are interconnection ele-
ments without a storage model 

n Component Structures bind sig-
nals to a port structure 

n A component structure can be used
1. to instantiate and access external
hardware, 2. to create the toplevel
hardware interface 

n Signals can be used in expressions
External Module Interface EMI

n Abstraction & Interconnect of
hardware blocks to algorithmic pro-
gramming level using abstract ob-
jects and methods to access
hardware blocks.

n Hardware blocks are modelled on
hardware behaviour level (VHDL)
and meta language statements (in-
terpreted during synthesis)

n Hardware blocks are accessed by a
set of methods from programming
level, e.g. read, write, and control op-
erations 

n EMI provides software models, too!
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Design Example: SensoNET

Design Example: SensoNET
n Complete application of a sensor node

in a sensor network (sensorial mat.) 
n Smart and robust communication with

Simple Local Intranet Protocol SLIP

n Remote procedure call interface
(RPC, application layer)

n Data acquisition with preprocessing of
sensor signals

 Figure 4. SensoNET used in sensorial material: network of smart strain gauge sensor nodes
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Design Example: SensoNET

n Mapping of algorithms and  massive
parallel data processing to SoC sensor
node with high-level synthesis  using
ConPro: à ¶ low power        · mina-
turization ¸ low latency3

n Mapping of same sources to software
(C) using ConPro, too:  à ¶ interfacing
computers · test/simulation3

 Table 1. Characteristics of SensoNET implementation (HW: Hardware, SW: Software)

*R1: Sequential part of message routing in SLIP

Parameter Value
HLS source code, ConPro ∼ 4000 lines, 34 processes

30 shared objects (16 queues, 2 timers)
HW: synthesized VHDL sources ∼ 32000 lines
SW: synthesized C sources ∼ 5500 lines
HW: FPGA, Xilinx Spartan III - 1000k 11261/15360 LUT (73 %), 2925 FF
HW: ASIC, standard cell library LSI_10K ∼ 244k gates, 15k FF ≅ 2.5mm2 | 0.18μm 
HW: power consumption (FPGA board) < 250mW (including analog electr.)
HW: performance benchmark R1* 82 clock cycles
SW: performance benchmark R1* 2305 unit machine instructions



11
  Stefan Bosse -  Hardware Synthesis of Complex System-on-Chip Designs for Embedded Systems

Summary and Outlook
Desgin of parallel SoC

n Complex SoC systems with concur-
rency on control- and data path level
can be efficiently designed from pro-
gramming level

n The concurrent multi-process model
with interprocess-communication
and guarded atomic access of
shared resources allows designing
of complex parallel systems

n Hardware blocks are abstracted and
accessed using a method based ob-
ject-orientated programming style

Design of parallel software
n Parallel software can be synthesized

using the same synthesis frame
work and programming language 

Outlook: Design of distributed systems
n From parallel to distributed systems
n Actually shared objects on hardware

level are accessed by signals à

transformation of signals to message
based communication

n Objects and processes distributed
over hardware and software compo-
nents
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