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Overview


Tiny Machine Learning is a new approach that is being used for data-driven

prediction, classification, and regression on microcontrollers using local sensor

data.
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Overview



Tiny Machine Learning is a new approach that is being used for data-driven

prediction, classification, and regression on microcontrollers using local sensor

data.

But even simple sensor data acquisition, aggregation, and processing is a

challenge in distributed sensor network environments, the IoT, mobile

networks, and other distributed strongly heterogeneous networks.


The goal is to process sensor data locally and derive compressed relevant

information features (e.g., damages, attacks, ...) with final global feature

fusion.
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Overview


To overcome issues and limitations with software and ML deployment in

strong heterogeneous computer networks, the real-time capable low-resource
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Overview



To overcome issues and limitations with software and ML deployment in

strong heterogeneous computer networks, the real-time capable low-resource

Virtual Machine REXAVM is introduced.

REXA VM provides Virtualization of basic ML operations and models

including but limited to: Decision Trees, ANN, CNN

REXA VM and its ML operations can be deployed on low-resource

microncontrollers like the STM32 ARM Cortex M-series starting with 20 kB

of RAM and 32 kB ROM only!
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Introduction

Fig. 1. Let's start here: A material-integrateable sensor node for damage diagnostics in Fibre-Metal Laminates

using Guided Ultrasonic Waves (STM32 ARM Cortex M0, RFID, ADC) [IMSAS Bremen, B. Lüssem et al.,

2023]
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Host Platforms and Efficiency

Efficiency of data processing is always an important objective to optimize, especially for

material-integrated sensor networks. The efficiency of data processing systems can be

compared by the following normalized performance factor ε:

ϵ =

C: Data processing system's computational power in instructions per second (MIPS)

M: Memory capacity (RAM/ROM) in k Bytes

A: Entire chip area in mm
2

P: Electrical power consumption in mW.
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Host Platforms and Efficiency

Device Chip Area Clock/MIPS Power RAM/ROM ε

Atmel Tiny 20 2.1 mm
2
 (1.55x1.4x0.53

mm)

12 MHz 4 mW 0.1 kB/2 kB 3

ARM Cortex M0 (Smart Dust

2002)
0.1 mm

2 740 kHz 70 mW 4 kB/4 kB 0.84

FreeSclae KL03 (ARM Cortex

M0+)
4 mm

2 48 MHz 3 mW 2 kB/40kB 168

STM32 F103VC M3 ∼10 mm
2 72 MHZ 200

mW

48 kB/256

kB

11

STM32 F103C8 M3 ∼6 mm
2
 (meas.) 48 MHZ 100

mW

20 kB/64 kB 6.7

STM32 L031G6U6 M0+ 0.25 mm
2
 (meas.) 16 MHZ 2 mW 8 kB/32 kB 1280

STM32 L073CZU6 M0+ ∼1 mm
2 16/32 MHZ 5/12

mW

20 kB/192

kB

678/565

Xilinx Spartan 3-500E 9.6 mm
2
 (meas.) 50 MHz 100

mW

45 kB 2.34

Xilinx Spartan 7-S25 ∼50 mm
2 100 MHz 100

mW

202 kB 4

Stefan Bosse - Virtualization of Machine Learning - Overview

10 / 44



The Concepts

1. VM with integrated compiler

2. Programs (and ANN models, too) are always delivered in textual format

3. On-the-fly compilation to linear Bytecode (< 600 lines of C code!)

4. No dynamic memory management except by stack operations

5. KISS (< 3000 lines of C code); highly configurable (custom ISA)

6. VM can be directly embedded in IO loops (microcontrollers) cooperating with

other tasks
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VM Architecture

 Memory Model
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VM Architecture


Memory Model

Instruction Set Architecture (Bytecode)

Stefan Bosse - Virtualization of Machine Learning - VM Architecture

13 / 44



VM Architecture



Memory Model

Instruction Set Architecture (Bytecode)

Real-time Features and Scheduling

Stefan Bosse - Virtualization of Machine Learning - VM Architecture

14 / 44



VM Architecture



Memory Model

Instruction Set Architecture (Bytecode)

Real-time Features and Scheduling

Compiler

Stefan Bosse - Virtualization of Machine Learning - VM Architecture

15 / 44



VM Architecture



Memory Model

Instruction Set Architecture (Bytecode)

Real-time Features and Scheduling

Compiler

ML Core Operations

Stefan Bosse - Virtualization of Machine Learning - VM Architecture

16 / 44



Memory Model and Instruction Processing

CS

vmrun
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Fig. 2. Multi-stack Computer with mixed-mode code segment (no heap memory), integrated JIT compiler, and

Bytecode processor (vmloop)
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Instruction Set Architecture

Most ops are zero-operand instructions (single world) operating directly on the

stack(s) or the program counter

With some exceptions the ISA can be freely defined (via code snippets and macro

definitions, discussed in the SDK section)

Zero-operand operations consume one Byte (see next slide)

Most instructions have constant and equal execution times (real-time; run-time

prediction possible)

 But the widely used and well known FORTH programming language will be

used commonly (or any sub-set; there is no real standard)
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FORTH

Reverse Polish Notation (stack language)

"Write once and forget (read never)" issue

But keeps compiler simple (low resources and compilation times)

var x
10 20 + x !
x @ . cr
: vecmean
  0
  100 0 do
    data i cell+ @ +  
  loop
;
vecmean . cr
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Bytecode Format

7     5        0  7         0 15        0       
┌─────┬────────┐  ┌─────────┐ ┌────────────────┐
│ A B │  Code  │  │ Literal │ │ Literal        │
└─┬─┬─┴────────┘  └─────────┘ └────────────────┘
  │ │                                           
  │ │             15                    0       
  │ │             ┌─────────────────────┐       
  │ │             │ Address             │       
  │ │             └─────────────────────┘       
  0 0  Single (short) Literal                   
  0 1  Double (long)  Literal                   
  1 0  OpCode (Lower range)                     
  1 1  OpCode (Upper range)                     

Def. 1. REXA VM Bytecode Format (1 Byte: Post-fix operation, 2 Bytes: Short word, 4 Bytes: Double word,

3 Bytes: Code + Address)
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Real-time Scheduling

A sensor node, in particular, has to process a set of tasks characterised by different

priorities, arrival times, deadline, and execution times:

1. Signal sampling and generation (triggering)

2. Event detection

3. Communication (on-chip, on-board, or externally wireless)

4. Computation

5. Energy Management (energy savings and optimisation)

6. Service requests and processing (deadlines)

7. Watchdog (sensor and node failure detector)
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Real-time Scheduling

These tasks must be scheduled under time and performance constraints.

Assuming only one physical control path (one processor), the tasks must be

scheduled in slices by one main scheduling loop.

Self-powered sensor nodes introduce additional energy constraints

The tasks can be classified as

event-based (short-running),

data-driven (long running), and

communication (event- and data-driven) tasks.
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Execution Loop


The VM Bytecode execution and source-code compilation can be performed

incrementally limiting the number of instruction steps or compiled tokens

satisfying soft real-time constraints.

VM loop is a monolithic switch-case block mapping instruction codes on code

snippets executing the operations (optimized to linear goto LUT, Constant time)

Fig. 3. Nested execution loops in an embedded system
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System Call-gate Interface

The system call-gate interface is a unified communication and execution interface to the

REXA VM run-time environment and compiler. There are two complementary versions

of the system call-gate interface addressing software and hardware implementations of

the VM:

Stefan Bosse - Virtualization of Machine Learning - VM Architecture

SM: A shared-memory architecture

MP: A message-based architecture

Fig. 4. System Call-gate Interface connecting a sensor

node root application software to an isolated VM

instance (a) via shared memory and a single system

call function (b) via message-based communication

and a serial link or signal bus
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Pocket GUW Laboratory

Example of an application using the call-gate interface: A digital oscilloscope

equipped with the REXA VM

Fig. 5. The pocket GUW laboratory only using low-budget and low-quality devices for GUW-based damage

detection in Fibre composite materials. The DSO implements REXA-VM and communicates via an USB

virtCOM port with an external computer. https://arxiv.org/abs/2302.09002v1

Stefan Bosse - Virtualization of Machine Learning - VM Architecture

25 / 44

https://arxiv.org/abs/2302.09002v1


Compiler

Highlights

Just-in-time and incremental compiler

In-place compilation Program Text ⇒ Bytecode via Code Segment frames

Low memory requirements

Use of hash and indexed Lookup Tables (LUT) for core instruction codes and user

defined data and code (function words)

Only static tables used with constant memory requirement
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Vector Operations

Only integer arithmetic is supported (by low-resource and low-power

microcontrollers)

An ANN (and CNN) consists of two parts:

1. The data, i.e., for parameter, input, and output variables;

2. The structure and functions processing the data.

The ANN can be functionally decomposed into the following vector and matrix

operations assuming integer approximation:

f : Rn → R
p ≈ I

n → I
p, f = g ∘ fl−1∘fl−2∘. . ∘f1,fi(→x) = a(ŵi→x + →bi)

g(→z) =

⎧⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪⎩

z regression

binary classification

multi-classification
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Vector Operations

ANN models can be decomposed in chained vector operations!

Vectors are initialised arrays (model parameters) or initialised arrays (input,

intermediate, and output data)

Vector (array) data is embedded in the Code Segment (no heap!)

   Program            Code Segment 
┌─────────────┐      ┌─────────────┐ 
│ array x 100 │      │ bytecode .. │ 
│ array y 20  │      │             │ 
│ array z { 1 │      │ <array z>   │ 
│  3 4 .. }   │      │             │ 
│ ...         │  =>  ├─────────────┤ 
│ ...         │      │ <array x>   │ 
│ ...         │      │ <array y>   │ 
└─────────────┘      └─────────────┘ 
<array>: [LEN:2][DATA:LEN*WORDSIZE] 

Def. 2. Initialized arrays embedded in-place in code frames and non-initialized arrays stored at the end of the

compiled code frame
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Vector Operations

For ANN and CNN models, a set of scaled vector (array) operations is provided

(commonly W=16 Bits signed integer).

Most vector operations are using 2W arithmetics internally (e.g., 32 Bits) with final

down (or up) scaling of results

Scaling parameters must be computed by a model analyzer

Operation Description

array Create an initialised or unintialised array (vector)

vecscale Scale a vector (negative scale value: division, positive: multiplication)

vecadd vecmul Elementwise vector addition and multiplication

vecfold Folding operation (ANN FC layer for multiple neurons )

vecconv Multi-purpose convolution and pooling operation (CNN)

vecmap Elementwise application of a function (e.g., relu or sigmoid), used for ANNs and CNNs

vecreduce Vector reduction (scalar output), e.g., minimum or maximum search, sum, product

Stefan Bosse - Virtualization of Machine Learning - VM Architecture

29 / 44



Model Data

( Layers: 14,8,2 #neurons:24 )
array input 14
( Layer I )
array wghtsI { 329 -499 ... 10 400 }
array biasI { -764 389 ... -907 -405 }
array scaleI { -3 9 ... 5 9 }
array actI 14
( Layer H1 )
array wghtsH1 { 622 -790 ... 708 248 }
array scaleH1 { 0 5 ... -4 7 }
array actH1 8
( Layer O )
array wghtsO { 869 939 ... 785 910 }
array biasO { 252 -565 }
array scaleO { 4 5 }
array output 2

Model Computation

( Input data is stored in input )
( Output data is stored in output )
: forward
  ( Layer I )
  input wghtsI actI scaleI vecmul
  actI biasI actI 0 vecadd
  actI actI $ sigmoid 0 vecmap
  ( Layer H1 )
  actI wghtsH1 actH1 scaleH1 vecfold
  actH1 biasH1 actH1 0 vecadd
  actH1 actH1 $ sigmoid 0 vecmap
  ( Layer O )
  actH1 wghtsO output scaleO vecfold
  output biasO output 0 vecadd
  output output $ sigmoid 0 vecmap
;

ANN Example
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Software Development Kit
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Fig. 6. Overview of the overall concept of REXA-VM development (C-SN: C source code snippet, H-SN: C

Header snippet, JS: JavaScript, FTH: Forth VM code definitions, JSON: JavaScript Object Notation, CG:

Code generator, CC: C Compiler, CP: ConPro HLS, SYN: RTL synthesis tool)
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The ISA is defined by a collection of code snippets and macro definitions

There are different implementations for different host platforms (or OS)

There are different implementations for software and hardware VMs

All code and definitions are stored in a simple JSON data-base that can be accessed

by various compiler programs

 Git it here and try out: https://github.com/bsLab/rexavm/
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Resilience

Stefan Bosse - Virtualization of Machine Learning - Resilience

33 / 44



Resilience and robustness on VM-level

0. KISS: VM architecture is simple and provides inherent safety due to its

simplicity;

1. Enhanced error detection and error recovery due to virtualization and isolation

of critical architecture components; a pure textual code and data VM input

interface increases the probability of detecting communication errors (data

corruption);

2. Strict separation of control and data stacks (r-stack is not accessible by user

code);

3. Tasks can only access private data directly (data is embedded in their private

code frames);

4. Ensemble VM execution (hardware or multi-core software implementation),

executing the same code in parallel on multiple VM instances and comparing

intermediate states and results (majority decision making; stopping of faulty

computations);
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Resilience and Robustness on VM-level

5. Check-pointing with optional persistent storage enabling stop-and-go (instead

of stop-and-forget) processing (e.g., on irregular and short power cycles);

6. Exception handling;

7. Adaptivity due to incremental code execution (i.e., code updates overwriting

older code via the global dictionary);

8. Hardware-Software-Simulation Co-design by unified DB-driven VM code

generators enables the operational simulation, profiling, and test of real

network nodes with the same operational semantics and discrete timing;

9. Optional special data codings (hardware, simulated in software) for improved

error detection and error correction.

Stefan Bosse - Virtualization of Machine Learning - Resilience

35 / 44



Performance
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VM

1. Compilation (MCPS, Tokens)

2. Bytecode execution (MWPS, Bytecode Instructions)

Target Configuration MIPS MCPS Code/Heap

STM32 F103VC3, 72MHz,

256kB ROM, 48kB RAM

CS=1024, DS=256, RS=128, FS=64,

Words=101

1.1 /

15k/MHz

0.1 /

1.4k/MHz

8/8 kB

STM32 F103VC3, 72MHz,

256kB ROM, 48kB RAM

CS=1024, DS=256, RS=128, FS=64,

Words=64 (no double word arithmetic)

1.1 0.1 7/7 kB

STM32 F103VC3, 72MHz,

256kB ROM, 48kB RAM

CS=4096, DS=1024, RS=256, FS=128,

Words=101

1.1 0.1 8/16 kB

STM32 L031, 16 MHz, 32

kB ROM, 8 kB RAM

CS=1024, DS=256, RS=32, FS=32,

Words=101

0.24 /

15k/MHz

0.02 7.1/8 kB

i5-7300U, 3GHz 4 GB

RAM

CS=16384, DS=4096, RS=1024,

FS=256, Words=101

280 /

90k/MHz

27 /

9k/MHz

32/64 kB
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VM

Highlights

1:70 → About 70 native machine instructions / VM instruction execution

(ARM Cortex) or 1:15 (Intel x86)

1:700 → About 700 native machine instructions / Word compilation (ARM

Cortex) or 1:100 (Intel x86)

Only 13 nJ / VM instruction (ARM Cortex M0+)

Only 130 nJ / Word compilation (ARM Cortex M0+)

Computation times of medium sized ANNs is below 1 Second (ARM Cortex

M0+, 16 MHz, typically in the Milliseconds range)

Compilation times of medium sized programs is below 1 Second (typically in

the Milliseconds range)

Start-up time of VM is below 100 ms (typically in the Milliseconds range)
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Vector Operations (ANN)

Fig. 7. Normalized computation times for ANNs of different size (with two, three, and four layers) and two

different host platforms (Generic i5 x86 @2900 MHz and STM32F103C8 @72MHz) as a function of neurons
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Vector Operations (ANN)

Fig. 8. Code size of ANN as a function of the number of neurons
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Summary



A stack-based virtual machine architecture for low-resource, tiny embedded

systems was introduced and analyzed. The overhead, even on very low-

resource systems, is low with respect to typical running times under energy

constraints and tasks to be performed in real-time
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Summary



A stack-based virtual machine architecture for low-resource, tiny embedded

systems was introduced and analyzed. The overhead, even on very low-

resource systems, is low with respect to typical running times under energy

constraints and tasks to be performed in real-time

A major feature is the tight coupling of a Text-to-Bytecode compiler with the

Bytecode interpreter, ensuring robustness, security, stability, and

interoperability in strong heterogeneous environments.

ML classification and regression models can be computed using integer

arithmetic and a set of vector operations with low computation times and

memory requirements.

Stefan Bosse - Virtualization of Machine Learning - Summary

43 / 44



Tiny Machine Learning Virtualization for

IoT and Edge Computing using the REXA

VM

Towards Learning Technical Systems

Stefan Bosse
1,2

Christoph Polle
3

1
University of Bremen, Dept. Mathematics & Computer Science, Bremen, Germany

2
University of Siegen, Dept. Mechanical Engineering, Siegen

3
Faserinstitut Bremen (FIBRE), Bremen, Germany

Stefan Bosse - Virtualization of Machine Learning - Summary

44 / 44


