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Optimization of Material Distribution in Multi-Material Components
Presentation Overview
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Introduction
Multi-Material Structures for Functional as well as Structural Applications. 

Applications mainly in …

• thermal management and

• structural reinforcement.

Source: https://aerosint.com/multimaterial-heat-exchanger/

Source: Fraunhofer IGCVSource: Florea et al., Int. J. Numer. Methods Eng. 121 (2020) 1558-1594.



Introduction
Multi-Material Manufacturing Approaches.

Generally well suited for
multi-material approaches.

Polymer multi-material
options available. 

Additive Manufacturing

Compound/Hybrid Casting

etc.
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Additive Manufacturing: Aerosint Process by Desktop Metal

Special, proprietary Selective Powder Deposition (SPD) recoater design.



Additive Manufacturing

Compound/Hybrid Casting

etc.

Introduction
Multi-Material Manufacturing Approaches.

Source: 
Lehmhus, D.; von Hehl, A.; Hausmann, J.; 
Kayvantash, K.; Alderliesten, R.; Hohe, J. New Materials and Processes for 
Transport Applications: Going Hybrid and Beyond.
Advanced Engineering Materials 21 (2019) 1900056.



Optimization problem:

Minimization of total strain energy

Basis: Finite Element (FE) model including

loads and boundary conditions.

Representation of material via finite

element properties.

Linear elastic FE simulation yields element-

based strain energy data.

Element-wise redistribution of material

properties leads to improved variants.

Multi-Phase Topology Optimization
The Basic Principle.

Source: Schittenhelm, B.; Burblies, A.; Busse, M. Stahlverstärkter Aluminiumguss – Bauraumoptimierung durch lastfallgerechte Auslegung einen Verbund-Hecklängsträgers 
mittels Mehrphasen-Topologieoptimierung.  Computer Based Porosity Design by Multi Phase Topology Optimization. Forsch. Ingenieurwes. 82 (2018) 131-147.



1. Set up the FE model of the problem under scrutiny.

2. Predefine number, volume fraction and (elastic) properties of materials.

3. Associate material properties to finite element sets, maintaining the predefined volume fractions.

4. Randomly redistribute material properties over the FE model to generate an arbitrary starting point.

5. Perform FE simulations and record element-level strain energies, as well as total strain energy (model-level). 

6. Redistribute materials (a) randomly or (b) based on a specific optimization strategy, best including some random element. 

7. Make sure material fractions are maintained – if this is not the case, apply appropriate changes. 

8. Perform an FE simulation, and check whether total strain energy has been reduced – if yes, continue with the present configuration above

(iteration), if not, create and evaluate new candidate models.

9. Continue until further iterations do not yield significant improvements anymore.

Multi-Phase Topology Optimization
The Basic Principle.



Randomized exchange of elements to create

a new configuration

Repetition (inner steps) until improvement over

previous state achieved (outer steps).

Variants compared:

• fraction of elements subject to random

exchange varied

• unconstrained (i. e. random) exchange

Optimization Strategies
Stochastic Approach.



Randomized exchange of elements to create

a new configuration

Repetition (inner steps) until improvement over

previous state achieved (outer steps).

Variants compared:

• fraction of elements subject to random

exchange varied

• unconstrained (i. e. random) exchange vs.

• constrained exchange following a specific

strategy

Optimization Strategies
Targeted Approach.



Creation of a population of 20 random

variants for the initial step, of 20 variants

based on previous set of results for each

subsequent (outer) step.

Inner steps correspond to evaluation of the

20 population members, i. e. at this stage,

each outer step invariably implies 20 inner

steps, each of which is an FEM simulation.

Selection of a survivor (best of 20) and

crossover with the parent, followed by

mutation. Degree of mutation varied.

No further constraint implemented.

Optimization Strategies
Genetic Algorithm.



Selected sample load case: Asymmetric 3-point-bending as depicted below.

Small initial model for fast calculation and initial comparison of algorithms:

832 elements of type C3D8R.

Three different materials at equal volume fractions:

„aluminum“: E = 70 GPa, Poisson‘s ratio 0,3

„copper“: E = 110 GPa, Poisson‘s ratio 0,3

„steel“: E = 200 GPa, Poisson‘s ratio 0,3

Initial configuration left 1/3 of beam Al, 

centre 1/3 Cu, right 1/3 Fe

Results & Discussion
Simple Test Load Case.

sketch of the load case



• Stochastic Approach:

Extremely slow convergence,

high computational effort

with final results falling

short of genetic algorithm

and targeted approach.

• Genetic Algorithm:

Limited convergence, as each

inner step requires 20 instead

of 1 FEM calculation. Still

showing better results than

the stochastic approach. 

• Targeted Approach:

Highly efficient on a small

model with negelctable likeli-

hood of local minima.

Results & Discussion
Shifting the Building Blocks: Comparison of the Approaches.

SA, TA: 5% random variation
GA: 1% mutation rate
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Probability of total strain
energy levels for random

material distributions.

Basis: 100 samples.
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• 20 runs performed per degree of random

variation.

• For each of these 20 runs, the same initial

distribution was used.

• Initial value of the total strain energy was

52.946 mJ.

• Optimization was stopped after 1000 steps.

Results & Discussion
Stochastic Approach: Influence of the Degree of Random Variation.
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• 20 runs performed per degree of random 

variation.

• For each of these 20 runs, the same initial

distribution was used.

• Initial value of the total strain energy was

52.946 mJ.

• Optimization was stopped after 1000 steps.

• At 0% random variation, for the chosen

initial material/property distribution,

the algorithm unanimously leads to a

total strain energy value of 32.893 mJ.

Results & Discussion
Targeted Approach: Influence of the Degree of Random Variation.



• 10 runs performed per degree of random 

variation.

• Optimization was stopped after 1000 steps.

Results & Discussion
Genetic Algorithm: Influence of the Degree of Random Variation.



• 10 runs performed per degree of random 

variation.

• Optimization was stopped after 1000 steps.

• At 0% mutation rate, the algorithm

leads to total strain energy values in

a range from 41.039 to 43.019 mJ, 

with an average of 41.886 mJ.

Results & Discussion
Genetic Algorithm: Influence of the Degree of Random Variation.



• Targeted approach used on configurations

with varied fractions of aluminum and steel.

• Optimization was stopped after 1000 steps.

• 6 runs were performed for each variant,

starting with varied initial configurations.

• Degree of variation was set to 1%.

• Product of density and final strain energy

as measure of performance – lowest value

assumed to signify optimum lightweighting,

achieved here at approx. 60 vol.-% Al.

Results & Discussion
Targeted Approach: Lightweighting of a Two-Material Structure.



Summary of current results.

• The unconstrained stochastic approach require far too many iterations.

• Suitable constraints can lead to really significant improvements, as shown by the targeted approach.

• The targeted approach also outperforms the indiscriminative genetic algorithm.

• However, the genetic algorithm does outperform the stochastic approach. 

• For all approaches compared, variation of results when using identical as opposed to different random distributions as starting point is slightly 

reduced, but remains in a similar range. Also, the final levels of total strain energy are similar irrespective of identical or varied starting points.

Conclusion & Outlook
Main Findings.

Seite 24



Summary of current results.

• Further optimization of algorithms, including pre-check of new configurations prior to FE simulation runs to further computational effort,

and thus reduce runtime.

• Adding the concept of constraints to the genetic algorithm. 

• Evaluation of higher complexity problems (more elements, materials, loads, …).

• Extension towards plasticity: Check for local transgression of material-dependent yield stress and correct where needed.

Conclusion & Outlook
Next Steps.

Seite 25
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