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Abstract — Detection of hidden defects in materials using X-ray images is still a challenge. Often a lot of defects

are not directly visible in visual inspection. In this work, a data-driven feature marking model is introduced per-

forming semantic pixel annotation. Input data is delivered by a standard industrial X-ray instrument (named

MidQ, reference device) and a low-cost self-constructed portable X-ray instrument (named LowQ), which is intro-

duced in detail in this work, too. Technical details of the X-ray instrument are relevant since the quality of the

feature detector is compared with respect to noise, contrast, and signal quality of the MidQ and LowQ devices. Fi-

nally, simulation of X-ray images is used to provide a ground truth data set for the training of the feature detector.

It can be shown that this approach is suitable to detect hidden pores in high-pressure die casted aluminum plates.

Keywords — Non-destructive Testing, Damage Diagnostics, X-ray Radiography, Computer Tomography, Feature Detec-

tion, Machine Learning

1. Introduction

It is still difficult to identify and detect hidden faults or impurities in multi-layered composites like fiber-

metal laminates (FML) as well as in homogeneous materials, e.g., high-pressure die casted aluminum materi-

als, even using advanced X-ray Computer Tomography (CT). For example, an impact damage can be nearly

invisible by a frontal X-ray projection, although, the deformation can be seen and detected manually by hand

perception. Hidden pores in materials can be detected and analyzed by 3D CT volume rendering, but hard to

be identified in single projection images (Radiography). Things are getting more worse if a portable low-cost

X-ray radiography or semi-tomography machine is used (called Low-Q measuring device), as introduced and

described in this work.

It is desirable to detect or mark defects, damages, or impurities by an automated feature marking system

directly in the measure images. The impact of image quality can be relevant to the feature detection quality,

regardless of the complexity of the model behind [1]. Often complex Neural Networks (Deep models) are

used [2]. In this work, a simple pixel classifier is used. Semantic pixel detectors are simple mathematical

models that can be used to mark Region of Interests (ROI) in an image relating to a specific semantic class.

After the image preprocessing and filtering stages, damage and material faults are identified by a pixel ano-

maly detector, basically an advanced Convolutional Neural Network (CNN) and region-proposal R-CNN

models. Training of pixel classifiers can use a few images only because each pixel region is a sample in-

stance. R-CNN models require an extended sample data base, which cannot be acquired only by physical

measurements. The training and test data set will always limited by a limited number of specimens, e.g., with

impact damages, and a limited variance in material and damage parameters (e.g., location). For this reason,

the data set is extended by synthetic data augmentation using X-ray simulation. In contrast to other wave

measurement principles like Guided Ultrasonic Waves (GUW), X-ray images can be simulated with high ac-
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curacy (compared with physically measured images). We are using the gVirtualXray software library [3,4]

performing X-ray image simulation by using GPU processing only and ray-tracing. GvirtualXray is proven

for its suitability to produce accurate images as long as diffraction and reflection of X-rays are neglected. In

addition, a novel few projection hidden-damage detection methodology is introduced that can be used in-field

with a portable X-ray machine as described above. Preliminary results show a high defect detection rate for a

wide range of materials.
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Fig. 1. The basic framework combining experimental measuring data with simulated data

A X-ray measuring system consists of a X-ray source (commonly cone beam with a specific focal size di-

ameter fsd) and a X-ray detector. The X-ray source uses either a cold-emission or hot-emission (Coolidge)

X-ray tube. In cold-emission, the electrical field extracts and accelerates electrons from the cathode to the

anode, in hot-emission there is a heated free electron source, and the electrical field only accelerates the elec-

tron to a target anode material. Cold emission tubes lack independent tube current control (dependent on the

tube voltage).

The X-ray detector can be a direct or indirect conversion system. In a direct conversion system the X-ray

photons will generate electrons (photo effect) directly in the solid-state device, in an indirect conversion sys-

tem a conversion material (scintillator) is required to convert X-ray photons into visible light photons, finally

converted to electrons in a solid-state detector.

In addition to the X-ray conversion mode, there are direct coupled detectors and imaging systems that map

the X-ray converted image from a scintillator onto a solid-state detector. Direct coupled systems require an

optical coupling material, commonly a fiber optics plate (FOP) posing high geometric accuracy and low dis-

tortion. An indirect imaging system with a lens-based imaging system introduces optical distortion with re-

duced geometric accuracy, but having the advantage of low costs [5].

Solid-state detectors are typically Coupled Charge Devices (CCD) or CMOS pixel detectors. Although,

used in an indirect conversion system sensitive to visible light, the are still sensitive to incident X-ray radia-

tion producing shot or popcorn noise.

The X-ray equipment consists of a low-cost X-ray source for dental diagnostics and an X-ray detector con-

sisting of a conventional medical X-ray converter and amplifier foil (Fine 100) backside imaged by a com-

mercially available CMOS monochrome image sensor (back-illuminated Sony IMX290 2M pixel sensor) and

a simple two-lens optics. The optical distortion introduced by the optics increases with increasing distance
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from the center of the image ("barrel distortion") and must be corrected, at least for CT 3D volume

reconstruction.

The measured X-ray images pose increased spatially equally distributed non-gaussian noise (compared with

high-quality flat panel detectors) and more important randomly located "popcorn" shot noise by avalanche ef-

fects in pixels and pixel clusters (islands) due to X-ray radiation exposure (back-illuminated sensors are very

sensitive for this noise). The gaussian noise can be reduced by averaging, the shot noise is removed by using

multiple images recorded in series and an automated pixel replacement algorithm. The shot noise is a seed

threshold phenomena, i.e., the location and number of white pixels changes from image to image, therefore

allowing the replacement of white pixels in one image from unaltered pixels from another image.

Basically we can classify X-ray measuring devices and systems into three classes with respect to Non-

destructive Testing (NDT) in engineering, especially for metals and composite materials:

1. HighQ: Micro CT devices with micro focus tubes with optional optical magnification (focal spot diame-

ter below 50 µm), effective resolution below 100microm, SNR > 200;

2. MidQ: Industrial systems (standard focal spot diameter above 200 µm, typically 0.8 mm), effective reso-

lution above 100microm, SNR > 100;

3. LowQ: Low-cost system (standard focal spot diameter above 500 µm, typically 0.8 mm), effective reso-

lution typically above 50microm, SNR < 100.

The classification quality relies on resolution, contrast, and noise. In the following section we only distin-

guish between a low-cost and self-constructed LowQ and an industrial MidQ instrument as a reference with

standard focal spot diameters of about 0.8 mm. The low-cost X-ray measuring instrument (< 1000€) should

be an alternative for laboratory and industrial devices that are much more expensive (> 100000€). The techni-

cal and construction details are important to compare the device classes.

2. X-ray Radiography and CT Systems

Two experimental setups are used in this work delivering input data for the training and test of the au-

tomated damage feature marking model:

1. MidQ: Laboratory Radiography and CT system (Fraunhofer IFAM), electron beam focus spot diameter

0.75 mm (Wolfram anode material), anode voltage 50-120 kV, tube current up to 10 mA, direct imaging

solid-state detector 1000 × 1000 pixels, detector pixel size 200µm

2. LowQ: Self-constructed mobile low-cost Radiography and CT system, electron beam focus spot diameter

0.8 mm (Wolfram anode material), anode voltage 30-70 kV, tube current up to 1 mA, indirect imaged

monochrome and back illuminated CMOS camera sensor (1920 × 1080 pixels), detector pixel size 3µm,

image-scaled virtual detector pixel size 35µm, X-ray scintillator screen (Ortho Fine 100 foil).

2.1 Low-Cost X-Ray Device

The first device is only a reference system used to derive material and structure models and to compare

with the low-cost system introduced in this work. The architecture and the main components of the proposed

low-cost LowQ X-ray measuring device is shown in Fig. 2. A low-cost commercial wolfram X-ray tube with

a focal spot diameter of 0.8 mm and a typical anode voltage range of 30-80kV is used. The imaging system

consists of a widely used X-ray intensifier screen (Ortho Fine 100) and a commercial CMOS camera with a

double lens optics. The entire X-ray measuring device is controlled by an embedded computer (Raspberry Pi

4). The camera and the device controls can be accessed via a Web browser remotely.

The X-ray tube is a KL 27-0.8-70 based on a classical Coolidge principle (hot emission tube). The focal

spot diameter is about 0.8 mm with a opening angle of 19° (i.e., 70 mm spot diameter at 200 mm distance).

The X-ray beam current can be controlled by the heater independently from the X-ray anode voltage (maxi-

mal tube current is 10 mA). Nearly most of the electrical input power is converted into heat in the tube
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anode. Even low tube currents about 1 mA produces a heat power of more than 50 W, raising the temperature

of the anode far beyond 100 °C (measured with a thermographhy camera). The heat must be propagated

outside the tube, here by an attached massive Cooper cylinder (see right side of the tube in Fig. 3, detail view

of the X-ray source) and a ventilator. With this cooling, the anode temperature can be kept below 40°C for

operating times below one Minute.

The camera consists of a commercial monochrome CMOS back-illuminated image sensor (Sony IMX 290)

providing 1920x1080 pixels with 3µm × 3µm pixel size. The CMOS sensor supports high exposure times (5 s

and longer) by posing low-noise output. The optical imaging system consists of a zoomable double lens sys-

tem mapping the backside of the scintillator screen on the image sensor. With the given distance of 125 mm

(see Fig. 2 (b)) between screen and image sensor, the effective Field of View (FOV) is about 65 × 36 mm (ef-

fective image size is 30 µm).

The X-ray source unit, the X-ray detector unit, and the optional rotation stage are controlled by an embed-

ded computer (Raspberry Pi 4), which is connected to a LAN. The instrument can be accessed via a Web

browser. There is one main application program running on the embedded computer. The program controls

the camera (using a vendor SDK, ToupTek photonics) and captures images via USB, the X-ray unit and rota-

tion stage stepper motor via a GPIO port. A Geiger counter is used to monitor the X-ray intensity. The re-

mote access is provided via a HTTP service, providing the HTML control page, too (embedded in the

software).

Fig. 2. Low-cost X-ray Radiography and CT instrument (a) General overview (b) Details of the detector (all dimensions

in mm)
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Fig. 3. Prototype of the low-cost X-ray Radiography and CT instrument

Fig. 4. Electronic schematic of the low-cost X-ray source
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2.2 Electronics

The electronic schematic of the X-ray source is shown in Fig. 4. The circuit consists of a high-voltage gen-

erator, a electron heater constant current supply, and relay switches connected to the embedded computer. The

high-voltage generator uses a classical discrete zero voltage switching (ZVS) driver circuit to drive a high-

voltage transformer. The input voltage of the ZVS determines the output voltage of transformer T1 (about 40

kHz, input range 5-12 V, output voltage 5-12 kV). The output voltage of the high-voltage transformer is mul-

tiplied by a six-stage Villard cascade. The HV supply delivers up to 70 kV and 1 mA current (70 W). Neither

the voltage nor the tube current is regulated by a feed-back loop, in contrast to industrial devices.

2.3 Detector

The resolution of a X-ray imaging system is limited mainly by two parameters:

1. Detector pixel size dp multiplied by the optical image magnification, i.e., dpMopt;

2. The X-ray magnification Mxray.

Mxray =
ddet,src

dobj,src

a = (Mxray − 1)fb

The X-ray magnification is given by:

(1)

with fb as the focal spot diameter (FSD), resulting in an imaging focus limit of about a (aperture limit) [6].

This formula shows that a magnification Mxray not necessarily increases the resolution. The aperture (blur)

limit a increase with increasing magnification. For example, if we assume a detector pixel size of 200µm, a

FSD of 0.8 mm, and a magnification of M=2, the resulting aperture limited resolution is about 0.8 mm!

The exposure time tx defines the noise level and the source.to-noise ratio achievable with the given X-ray

power Px. The industrial reference MidQ system has a pixel area size of about 40 kµm2, whereas the LowQ

detector has a pixel area of only 9µm2! The direct imaging MidQ system has a tight coupling of the scintilla-

tor to the detector pixels via a FOP, whereas the indirect imaging system poses optical losses in lenses and

coupling components. The MidQ system requires typically exposure times in the order of 100 ms (with

Px=200 W), whereas the LowQ device requires at least 5000 ms (with Px=50 W).

The camera deployed in the LoWQ device is a USB 2.0 Omegon Guide 2000 M Mono with a back-

illuminated monochrome Sony IMX290 sensor. The optical imaging system consists of a CS-Mount double

lens system with 2.8-12 mm focal length and f/1.4 aperture. The IMX290 image sensor uses an integrated 12

Bits ADC (directly accessible by a camera raw format) for image digitalization, compared with an external 16

Bits ADC used in the industrial MidQ detector.

The scintillator used in the detector has a normalized conversion factor 100 providing sufficient amplifica-

tion and high resolution. The scintillator consists of phosphor materials based upon a mix of rare earths with

a high luminous intensity and low graininess. The screen emission matches ideally the spectral sensitivity of

the image sensor, as shown in Fig. 5 (relative sensitivity of 0.95 at main emission peak). A limiting resolution

up to 10 Line Pairs (LP) / mm with 10 % contrast can be achieved. The contrast of the entire low-cost X-ray

detector is about 70% at 2 LP/mm and about 25% at 8 LP/mm.
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Fig. 5. (a) Emission spectrum of the scintillator material [7] (b) Spectral sensitivity of the IMX290 image sensor [8] (c)

Resolution of the scintillator screen in dependence of the material thickness and amplification factor [7] (OG-2: conver-

sion factor 100, OG-4: 200, and so on) (d) Dot pattern measured with LowQ X-ray detector (e) USAF 1951 pattern

recorded with 55 kV/0.7 mA/average of 4 images (f) Intensity profiles and contrast at 2 an 8 LP/mm from (e)

2.4 Noise

The CMOS image sensor is sensitive to X-ray radiation, not too much to use the image sensor directly, but

with respect to popcorn and shot noise. Popcorn noise is a random seed phenomenon, i.e., in some pixels

there is an electron wall breakthrough leading to saturated (white) pixels. Fortunately, after the pixels are

cleared (before the sampling of the next image), the saturation is eliminated and two succeeding images will

commonly not pose the same flooded pixels.

Commonly, the image device is not directly exposed the X-ray beam. Instead, a mirror under an angle of

45° is used and the camera is placed with a 90° angle with respect to the X-ray beam axis (see [5], for exam-

ple). We tried the same approach, but we observed:

1. An expected reduction of light intensity (mirror reflectivity < 1) and more geometric distortions;

2. There is still shot noise (although, strongly reduced, but not totally vanished).

The second observation is a result of the mirror construction. The mirror was a conventional industrial

aluminum mirror mounted on an aluminum carrier under the same angle as the mirror. This combination still

scatters some X-rays.

Therefore, we placed the camera again in the X-ray beam and using a simple multi-image noise compensa-

tion method. It removes shot noise, and reduces non-gaussian X-ray and gaussian (electronics) noise, too,
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shown in Alg. 1. Examples and results are shown in Fig. 6. Choosing the γ threshold is crucial because not

all shot noise pixels reach the maximum camera intensity, and some will only be reduced by averaging if they

are below the chosen threshold.

______________________________________________________________________________________________________________________________________________________________________________________
Alg. 1. Shot (popcorn) noise removal and image averaging. γ is a noise threshold with respect to the image pixel value

range (commonly 0.9max) and Σ is a set of images. The result of the averaged and noise corrected image is σ0___________________________________________________________________________________________

1: σ0 := Σ[1]
2: ∀ (x,y) ∈ coord(σ0) do

3: if σ0[x,y] > γ then

4: ∀ σ in { Σ / σ0 } do

5: if σ[x,y] < γ then

6: σ0[x,y] := σ[x,y]
7: break

8: endif

9: done

10: endif

11: ∀ σ ∈ { Σ / σ0 } do

12: if σ[x,y] < γ then

13: σ0[x,y] := σ0[x,y] + σ[x,y]
14: else

15: σ0[x,y] := σ0[x,y] + σ0[x,y]
16: endif

17: done

18: σ0[x,y] := σ0[x,y] / |Σ|
19: done
___________________________________________________________________________________________

Fig. 6. (Top) Example images without (left) and with (right) noise cancellation (Bottom) Example line intensity plots with

flooded pixels (left) and residual noise only (right)
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In addition to the shot noise there is gaussian electronics and detector noise (not correlated among pixels)

and non-gaussian X-ray radiation and source noise, which can pose spatial correlation. In Sec. 5_ and Fig. 10

the gaussian noise of images sampled by the LowQ and MidQ instruments are compared. The industrial

MidQ device (including the X-ray source) has an average noise level SNR = x ⁄σ = 280 (2σ noise interval is

about 0.7%), whereas the LowQ device has an SNR = 95 (2σ noise interval is about 2%).

3. Simulation

As common in engineering applications, the data variance of experiments and specimens is limited. On one

side, specimens with impacts damages pose a wide range of different micro and macro damages, e.g., delami-

nations, cracks, kissing bond defects, and many more. Therefore, the measurement (X-ray image) of one

specimen delivers only a few features, and the number of specimens is limited, too. High-pressure Die casted

aluminum specimens, on the other side, contain a high number of gas pores (here named defects), and the

number of specimens can be high. Even if the feature and data variance is sufficient, there is no ground truth

of the data, especially required for accurate labelling of training data for supervised Machine Learning (ML).

For this reason, in this work X-ray images are computed (simulated) numerically from synthetic specimens

based on a CAD model and Monte-Carlo simulation techniques, as shown in Fig. 7. The model is composed

of Constructive Solid Geometry operations creating solid materials or defects (pores) by union or difference

operations. The OpenSCAD software is used to convert the CSG model into a triangular mesh grid model

(STL). This mesh model is finally processed by our own X-ray simulation software XraySim, based on the

gvxr/gVirtualXray C++ software library [3] for computation of X-ray images.

The Monte Carlos simulation of the synthetic pores bases on a simple geometric ellipsoid model with a

base parameter set derived from real pore analysis using CT reconstruction and projections measured with the

MidQ device.

Fig. 7. Modelling of a die casted aluminum plate with gas pores using Monte Carlo simulation. Geometric parameters of

real measure pores are used to create synthetic pores at random positions. (Left) Programmatic CSG model (Right) Ren-

dered 3D model with synthetic pores (holes)

4. Feature Detector using a Semantic Pixel Classifier

The main objective of this work is to use an automated feature detector applied to single projection X-ray

images delivered by a LowQ (low-cost) X-ray instrument to detect hidden defects in materials, here specifi-

cally pores in high-pressure die casted aluminum plates.
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The input is a X-ray image, the output a feature map image that marks pores and provides there geometric

parameters and position, as shown in Fig. 8. A pixel classifier is commonly implemented with a Convolution-

al Neural Network (CNN), mostly with only one or two convolution-pooling layer pairs. The input of the

CNN is a sub-window masked out from the input image at a specific center position (x, y). The output is a

class (or a real value in the range [0,1] as an indicator level for a class). The neighbouring pixels determine

the classification result. th window with the CNN application is moved over the entire input image producing

the respective feature output image.

Fig. 8. Semantic pixel classifier applied to X-ray single projection images to detect and mark hidden defects

The pixel classifier is trained supervised with labelled regions of pores (i.e., pixels inside a closed polygon

path surrounding a pore in the image), as discussed in the following Sec. 5_.

5. Experiments

Experiments were carried out with aluminum die casted plates (150 mm × 40 mm × 3 mm) containing pro-

cess gas pores. The objective is to find a simple pore feature marking pixel detector that maps a X-ray single

projection image on a feature image marking all pores. The aluminum die casted plates as well as the MidQ

reference measurements were contributed by Dirk Lehmhus, Fraunhofer IFAM, Bremen, Germany.

In addition to the feature detection experiments, the low-cost and low-quality X-ray measuring device is

compared with the aforementioned commercial device with respect to noise, spatial resolution, contrast, and

geometric distortions.

In Figures 9 and 10 single projection X-ray images and a profile analysis are shown, measured with the

reference Mid Q and the LowQ devices. Only a few big pores can be easily detected by visual inspection.

The contrast of the biggest pore peak is C(MidQ) = 1.42 and C(LowQ) = 1.86. The FWHM of the pore peak

is FWHM(MidQ) = 7px ≈ 0.7 mm and FWHM(LowQ) = 25px ≈ 0.75 mm.
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Fig. 9. X-ray image sections from MidQ (left) and LowQ (right) device, respectively, of a selected hidden pore in a

aluminum high-pressure die casted plate (Pixel scaling: Left 100µm/pixel, Right: 30µm/pixel)

Fig. 10. Comparison of MidQ (left) and LowQ (right) measurement results from an aluminum die casted plate with pores

(Top) Averaged slice intensity of mostly homogeneous area (Bottom) Averaged slice intensity (average over vertically 20/3

pixels) of a strong pore. Mxray=2.0(MidQ)/1.0(LowQ), spx,eff=100µm(MidQ)/30µm(LowQ), exposure time t=100ms

(MidQ) / 2×5s (LowQ)
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The main objective of this work is the application of the semantic pixel classifier for feature marking of

pores in aluminum die casted plates using single projection sampled with the LowQ device introduced in this

paper. Since there is no ground truth in the measured images, i.e., accurate labelling for training is not possi-

ble, synthetic images retrieved from numerical X-ray simulation were used for the training of the pixel

classifier, finally applied to X-ray images.

!"#$%&'()*(+,$-."/*$0+()$12-$3"4*55+'/ !4#$65712$8"9*5+'*$-."/*$!3:0;#

!,#$657<=$>:?*$-."/*$!@+A;# !A#$657<=$>:?*$-."/*$!3:0;#

Fig. 11. Results of the feature marking for different X-ray images using a selected sample plate and two measuring instru-

ments and synthetic images. Note that the LowQ images have a different scaling and region compared to the MidQ and

synthetic X-ray images. aluDC: Die casted aluminum plate with pores, aluRO: Rolled and polished aluminum plate

without pores.

Fig. 11 shows some selected results. There are always image pairs shown consisting of the X-ray input im-

age (left) and the pore feature marking image (right) as predicted by the semantic pixel classifier. One of the

synthetic images and the prediction of the trained model is shown in Fig. 11 (a). Additionally, the feature

image shows the ROI selection and labelling of the input images used for training (red: pore area, blue:

selected background regions). The ROIs were automatically created from the CAD model used for simulation.
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The predictor model was trained with 40 epochs. The CNN architecture consists of two convolution-pooling

layer pairs with 8 filters each. The training set consisted of an imbalanced set preferring background

examples to suppress false positive predictions rather than false negative. Since there is no ground truth for

the measured images, we can evaluate only the results for the synthetic images. The overall accuracy achieved

on a test set is 93%, with a class-specific error of 4% background and 11% pore region marking. The F1

score is 0.93. These results sound promising, and examples of feature marking of measured images is shown

in Fig. 11 (c) and (d) for the low-noise MidQ and noisy LowQ instruments, respectively. It can be seen that

there is a significantly increased pore feature marking in the LowQ images compared with the MidQ images.

To estimate the impact of noise (from detector and radiation source) we tested a pore-free rolled and polished

aluminum plate, as shown in Fig. 11 (b), applying the same predictor model and expecting a black image, but

it is not. This shows clearly the noise sensitivity of the predictor model, which must be suppressed. An

approach to discriminate noise from pores in the feature marking images is to calculate the union of two

independent images from the same specimen, as it is expected (and can be shown) that noisy marking are

randomly positioned. Geometric distortions of the LowQ system seems to be irrelevant for the feature

marking process.

6. Conclusions

One of the main findings of this work is that a low-cost constraint does not result necessarily in low-

quality output (although, LowQ device named in this work). With respect to resolution and contrast the LowQ

device outperforms an industrial MidQ device, but noise is significantly higher due to lower overall sensitivity

and long exposure times not allowing extra exposure required to reduce image noise significantly. Additional-

ly, random popcorn/shot noise in the LowQ indirect imaging system requires at least two independent images

to remove this noise substantially.

The higher noise of the LowQ instrument compared with the industrial MidQ device has a significant im-

pact on the accuracy and quality of the data-driven feature marking model. Geometric distortions of the

LowQ system seems to be irrelevant for the feature marking process. It was possible to train the feature

marking detector with pure synthetic X-ray images computed by a numerical simulator using a CAD model

of the specimen with randomly created defects.

Future work must improve the training data set by overlaying measured noise (especially from the LowQ

device) to the simulated X-ray images.

7. Acknowledgments

The aluminum die casted plates as well as the MidQ reference measurements were contributed by Dirk

Lehmhus, Fraunhofer IFAM, Bremen, Germany.

The authors expressly acknowledge the financial support of the research work on this article within the

Research Unit 3022 “Ultrasonic Monitoring of Fibre Metal Laminates Using Integrated Sensors” (Project

number: 418311604) by the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)).

8. References

[1] B. Hena, Z. Wei, C. I. Castanedo, and X. Maldague, Deep Learning Neural Network Performance on

NDT Digital X-ray Radiography Images: Analyzing the Impact of Image Quality Parameters—An Ex-

perimental Study, sensors, vol. 23, no. 4324, 2023

[2] R. Booto Tokime, X. Maldague, Automatic Defect Detection for X-Ray inspection: Identifying defects

with deep convolutional network, Canadian Institute for Non-destructive Evaluation (CINDE) 2019,

Edmonton, Canad, (2019)

13



Stefan Bosse - Electronic International Conference on Sensors and Applications 2023

[3] gvirtualxray, https://gvirtualxray.fpvidal.net, accessed on-line on 24.1.2023

[4] F. P. Vidal, Introduction to X-ray simulation on GPU using gVirtualXRay, In Workshop on Image-

Based Simulation for Industry 2021 (IBSim-4i 2020), London, UK, October, 2021

[5] S. L. Balasubramanian and G. Krishnamurthi, X-ray scintillator lens-coupled with CMOS camera for

pre-clinical cardiac vascular imaging—A feasibility study, PLOS One, vol. 17, no. 2, 2022.

[6] Carl Zeiss, Resolution of a 3D X-ray Microscope - Defining Meaningful Resolution Parameters for

XRM, technical note, Carl Zeiss Microscopy GmbH, Germany, July 2013

[7] CAWO, Green-emitting Screens, https://www.cawo.com/products/intensifying-screens/green-emitting,

accessed on-line 13.9.2023

[8] FRAMOS, FSM-IMX290 Datasheet, https://www.framos.com

14


	Automated Damage and Defect Detection with Low-Cost X-Ray Radiography using Data-driven Predictor Models and Data Augmentation by X-Ray Simulation 
	Document
	Introduction
	X-ray Radiography and CT Systems
	Low-Cost X-Ray Device
	Electronics
	Detector
	Noise

	Simulation
	Feature Detector using a Semantic Pixel Classifier
	Experiments
	Conclusions
	Acknowledgments
	References


