
AgentJS	and	AIOS

1	/	44

Agent	Input-Ouput	System	(AIOS)

The	Agent	Input-Output	System	(AIOS)	is	the	interface	and
abstraction	layer	between	agents	programmed	in	AgentJS	and
the	 agent	 processing	 platform	 (JAM).	 Furthermore,	 it
provides	an	interface	between	host	applications	and	JAM.	A
JAM	instance	consists	of	multiple	modules:

Node
World
Code/Process	(control	and	modification)
Tuple	space
Signals
Mobility
Network	and	Communication	(AMP)
Scheduler
Security
Watchdog
Artificial	Intelligence	(optional):

Machine	Learning	(ML)
Constraint	Solving	Programming	(CSP)
Logic	Programming	and	Satisfiability	Solver	(SAT)

The	modules	are	accessible	(directly	or	indirectly)	by	the
agents	via	the	AIOS,	shown	in	Fig.	[#aios1].

AgentJS	and	AIOS

2	/	44

Figure	 [#aios1].	 Interface	 between	 agents	 and	 JAM	 and
between	 JAM	 and	 a	 host	 application	 by	 the	 Agent	 Input-
Output	System	(AIOS).

Agent	Roles

Security	 is	 provided	 by	 the	 agent	 platform	 by	 assigning
execution	 roles	 and	 levels	 to	 agents.	 The	 roles	 are
dynamic	and	can	be	changed	at	run-time.	The	execution	of
agents	and	the	access	of	resources	is	controlled	by	those
roles	 to	 limit	 Denial-of-Service	 attacks,	 agent
masquerading,	spying,	or	other	abuse:

There	are	four	levels:

0.	 Guest	(not	trustful,	semi-mobile)
1.	 Normal	(maybe	trustful,	mobile)
2.	 Privileged	(trustful,	mobile)
3.	 System	(highly	trustful,	locally	only,	non-mobile)

AgentJS	and	AIOS

3	/	44

The	 lowest	 level	 (0)	 does	 not	 allow	 tuple	 space	 access,
agent	 replication,	 migration,	 or	 the	 creation	 of	 new
agents.	 The	 JAM	 platform	 decides	 the	 security	 level	 for
new	received	agents.	An	agent	cannot	create	agents	with	a
higher	security	level	than	its	own.	The	highest	level	(3)
has	 an	 extended	 AIOS	 with	 host	 platform	 device	 access
capabilities.	 Agents	 can	 negotiate	 resources	 (e.g.,	 CPU
time)	and	a	level	raise	secured	with	a	capability-key	that
defines	 the	 allowed	 upgrades	 (defined	 by	 the	 services,
e.g.,	 agent	 role	 service	 or	 other	 resources	 like	 tuple
space	access).	The	system	level	can	not	be	negotiated.	The
capability	is	node	ans	service	specific.	A	group	of	nodes
can	 share	 a	 common	 key	 (identified	 by	 a	 server	 port).	 A
capability	consists	of	a	server	port,	a	rights	field,	and
an	encrypted	protection	field	generated	with	a	random	port
known	by	the	server	(node)	only	and	the	rights	field.

Among	 the	 AIOS	 level,	 other	 constrain	 parameters	 can	 be
negotiated	 using	 a	 valid	 capability	 with	 the	 appropriate
rights:

Scheduling	 time	 (longest	 slice	 time	 for	 one	 activity
execution,	default	value	is	between	20-200ms)
Run	time	(accumulated	agent	execution	time,	default	is
2s)
Living	time	(overall	time	an	agent	can	exist	on	a	node
before	it	is	removed,	default	is	200s)
Tuple	 space	 access	 limits	 (data	 size,	 number	 of
tuples)
Memory	 limits	 (fuzzy,	 usually	 the	 entire	 size	 of	 the
agent	 code	 including	 private	 data,	 actually	 not
limited)
Network	 links	 and	 connectivity	 (supported	 by	 the	 AMP
module)

Agent	Scheduling

JS	has	a	strictly	single-threaded	execution	model	with	one
main	 thread,	 and	 even	 by	 using	 asynchronous	 callbacks,
these	callbacks	are	executed	only	if	the	main	thread	(or
loop)	terminates.	This	is	the	second	hard	limitation	for
the	execution	of	multiple	agent	processes	within	one	JAM
platform.	Agent	processes	are	scheduled	on	activity	level,
and	 a	 non-terminating	 agent	 process	 activity	 would	 block

AgentJS	and	AIOS

4	/	44

the	 entire	 platform.	 Current	 JS	 execution	 platform
including	VMs	in	WEB	browser	programs	provide	no	reliable
watchdog	mechanism	to	handle	non-terminating	JS	functions
or	 loops.	 Although	 some	 browsers	 can	 detect	 time	 outs,
they	are	only	capable	to	terminate	the	entire	JS	program.
To	ensure	the	execution	stability	of	the	JAM	and	the	JAM
scheduler,	and	to	enable	time-slicing,	check-pointing	must
be	 injected	 in	 the	 agent	 code	 prior	 to	 execution.	 This
step	is	performed	in	the	code	parsing	phase	by	injecting
checkpoint	functions	CP()	at	the	beginning	 of	a	body	 of
each	 function	 contained	 in	 the	 agent	 code,	 and	 by
injecting	 the	 CP	 function	 calls	 in	 loop	 expressions.
Although	 this	 code	 injection	 can	 reduce	 the	 execution
performance	 of	 the	 agent	 code	 significantly,	 it	 is
necessary	 until	 JS	 platforms	 are	 capable	 of	 fine-grained
check-pointing	 and	 agent	 process	 scheduling	 with	 time
slicing.	On	code-to-text	transformation	(e.g.,	prior	to	a
migration	request),	all	CP	calls	are	removed.
AIOS	provides	a	main	scheduling	loop.	This	loop	iterates
over	all	logical	nodes	of	the	logical	world,	and	executes
one	activity	of	all	ready	agent	processes	sequentially.	If
an	activity	execution	reaches	the	hard	time-slice	limit,	a
SCHEDULE	exception	is	raised,	which	can	be	handled	by	an
optional	 agent	 exception	 handler	 (but	 without	 extending
the	time-slice).	This	agent	exception	handling	has	only	an
informational	purpose	for	the	agent,	but	offers	the	agent
to	 modify	 its	 behaviour.	 All	 consumed	 activity	 and
transition	 execution	 times	 are	 accumulated,	 and	 if	 the
agent	 process	 reaches	 a	 soft	 run-time	 limit,	 an	 EOL
exception	 is	 raised.	 This	 can	 be	 handled	 by	 an	 optional
agent	 exception	 handler,	 which	 can	 try	 to	 negotiate	 a
higher	 CPU	 limit	 based	 on	 privilege	 level	 and	 available
capabilities	 (only	 level-2	 agents).	 Any	 ready	 scheduling
block	of	an	agent	and	signal	handlers	are	scheduled	before
activity	execution.

After	 an	 activity	 was	 executed,	 the	 next	 activity	 is
computed	 by	 calling	 the	 transition	 function	 in	 the
transition	 section	 (or	 just	 applying	 an	 unconditional
value).	 If	 the	 activity	 is	 blocked	 (agent	 is	 suspended,
except	 signal	 handling),	 the	 next	 transition	 is	 computed
after	the	resume	of	the	agent	process.

AgentJS	and	AIOS

5	/	44

In	contrast	to	the	AAPL	model	that	supports	agent	process
blocking	on	statement	level,	eventually	allowing	multiple
blocking	 statements	 (e.g.,	 IO/tuple-space	 access)	 inside
activities,	 JS	 is	 not	 capable	 of	 handling	 any	 kind	 of
process	blocking	of	user	instructions	(there	is	no	process
and	 blocking	 concept).	 For	 this	 reason,	 an	 activity	 may
only	contain	one	blocking	statement,	and	the	blocking	is
applied	to	the	entire	activity	after	the	control	flow	of
an	activity	function	terminates.

Multiple	 blocking	 statements	 require	 scheduling	 blocks
that	 can	 be	 used	 in	 AgentJS	 activity	 functions	 (at	 the
end)	 handled	 by	 the	 AIOS	 scheduler.	 Blocking	 AgentJS
functions	 with	 a	 pending	 result	 use	 common	 callback
functions	 to	 pass	 function	 results	 to	 the	 agent,	 e.g.,
inp(pat,function(tup){..}).
A	 scheduling	 block	 consists	 of	 an	 array	 of	 functions
(micro	 activities),	 i.e.,	 B(block)	 =	 B([function()
{..},	 function(){..},...]).,	 executed	 one-by-one	 by
the	AIOS	scheduler.	Each	function	may	contain	a	blocking
statement	at	the	end	of	the	body.	The	this	object	inside
each	 function	 references	 always	 the	 agent	 object.	 To
simplify	iteration,	there	is	a	scheduling	loop	constructor
L(init,	 cond,	 next,	 block,	 finalize)	 and	 an	 object
iterator	 constructor	 I(obj,	 next,	 block,	 finalize),
used,	 e.g.,	 for	 array	 iteration.	 Agent	 execution	 is
encapsulated	in	a	process	container	handled	by	the	AIOS.
An	agent	process	container	can	be	blocked	waiting	for	an
internal	system-related	IO	event	or	suspended	waiting	for
an	 agent-related	 AIOS	 event	 (caused	 by	 the	 agent,	 e.g.,
the	availability	of	a	tuple).	Both	cases	stops	the	agent
process	execution	until	an	event	occurred.

The	 basic	 agent	 scheduling	 algorithm	 is	 shown	 in	 the
following	algorithm	and	consists	of	an	ordered	scheduling
processing	 type	 selection,	 i.e.,	 partitioning	 agent
processing	in	agent	activities,	transitions,	signals,	and
scheduling	blocks.	In	one	scheduler	pass,	only	one	kind	of
processing	 is	 selected	 to	 guarantee	 scheduling	 fairness
between	different	agents.	There	is	only	one	scheduler	used
for	 all	 virtual	 (logical)	 nodes	 of	 a	 world	 (a	 JAM
instance).	 A	 process	 priority	 is	 used	 to	 alternate
activity	and	signal	handling	of	one	agent,	preventing	long

AgentJS	and	AIOS

6	/	44

activity	 and	 transition	 processing	 delays	 due	 to	 chained
signal	processing	if	there	are	a	large	number	of	signals
pending.

![#jamsched]	Algorithm

∀	node	∈	world.nodes	do
	∀	process	∈	node.processes	do
		Determine	what	to	do	with	prioritized	conditions:
				Order	of	operation	selection:
				0.	Process	(internal)	block	scheduling	[block]
				1.	Resource	exception	handling
				2.	Signal	handling	[signals]
							-	Signals	handled	if	process	priority<HIGH	
							-	Signal	handling	increase	process	priority	
									temporarily	to	allow	low-latency	activity
									and	transition	function	scheduling!
				3.	Transition	execution
				4.	Agent	schedule	block	execution	[schedule]
				5.	Next	activity	execution
							-	Lowers	process	priority
		if	process.blocked	or	process.dead	or	
			process.suspended	and	process.block=[]	and	
			process.signals=[]	or
			process.agent.next=none	and	process.signals=[]	and
			process.schedule=[]
				then	do	nothing
		elseif	not	process.blocked	and	process.block≠[]
				then	execute	next	block	function	
		elseif	agent	resources	check	failed	
				then	raise	EOL	exception
		elseif	process.priority	<	HIGH	and	process.signals≠[]
				then	handle	next	signal,	increase	process.priority
		elseif	not	process.suspended	and	process.transition
				then	get	next	transition	
				or	execute	next	transition	handler	function
		elseif	not	process.suspended	and	process.schedule≠[]
				then	execute	next	agent	schedule	block	function
		elseif	not	process.suspended
				then	execute	next	agent	activity	and	
						compute	next	transition,	

AgentJS	and	AIOS

7	/	44

						decrease	process.priority

Algorithm	[#jamsched].	JAM	Agent	Scheduler

Agent	Class	Template

Agents	are	created	from	constructor	functions	providing	an
ATG	behaviour	template,	shown	in	Def.	[#agentjstempl].

![#agentjstempl]

function	agentclass(p1,p2..)	{
				//	Body	Variables	//
				this.v1	=	initial	value
				this.v2	=	initial	value
				//	Activtites	//
				this.act	=	{
								a1:	function	()	{	..	},
								a2:	function	()	{	..	},
								..
				}
				//	Activity	Transitions	//
				this.trans	=	{
					 a1:	anext,
								a2:	function	()	{	return	anext	},
								..
				}
				//	Signal	Handler	//
				this.on	=	{
					 signal:	function	(arg)	{	..	},				
					 ..
				}
				//	Current	and	Initial	Activity	//
				this.next	=	ainit
}

Definition	 [#agentjstempl].	 Basic	 structure	 of	 an	 agent
class	constructor	function

A	constructor	function	defines	a	set	of	parameters,	body

AgentJS	and	AIOS

8	/	44

variables,	 activity	 and	 transition	 function	 objects,	 an
optional	signal	handler	function	object,	and	the	reserved
next	 body	 variable	 pointing	 to	 the	 current	 (or	 after	 a
start	the	initial)	activity.

AgentJS	API

The	 following	 sections	 describe	 the	 agent	 programming
interface	 of	 AgentJS.	 The	 operations	 visible	 to	 agents
depend	on	their	privilege	level.	Operations	restricted	to
privilege	levels	are	marked.

Computation

There	 are	 various	 powerful	 and	 extended	 computational
functions	that	can	be	used	by	agents.	Please	note	that	for
some	reason	arrays	and	objects	cannot	be	iterated	in	agent
processes	 by	 using	 the	 for(p	 in	 a)	 statement.	 Instead
the	iter	function	has	to	be	used.	Furthermore,	the	this
object	 inside	 function	 callbacks	 references	 always	 the
agent	 object,	 i.e.,	 body	 variables	 and	 functions	 can	 be
accessed	by	the	this	object.

Operations

abs

function	(number)	→	number

Returns	absolute	value	of	number.

add

function	(a:number|array|object,	
										b:number|array|object)	
		→	number|array|object

General	 purpose	 addition	 operation	 for	 scalar	 numbers,
arrays,	and	objects	of	numbers.

AgentJS	and	AIOS

9	/	44

angle

function	(a:[number,number]|{x:number,y:number},	
										b?:[number,number]|{x:number,y:number}	
		→	number

assign

function	(src:array|object|string,dst:array|object|strin
g)	
		→	array|object|string

Assigns	 (copies)	 all	 elements	 from	 source	 to	 destination
object	that	is	returned.	The	destination	object	class	is
preserved.

concat

function	(array|string|object,	
										array|string|object)	
		→	array|string|object

Concatenation	operation	for	arrays,	strings,	and	objects.

contains

function	(array|object,	
										(number|string)|(number|string)[])	
									→	boolean

Tests	existence	of	an	element	or	an	array	of	elements	in
an	array	or	object	(attribute)

copy

AgentJS	and	AIOS

10	/	44

function	(array|object|string)	
		→	array|object|string

Returns	a	copy	of	an	array,	object,	or	string.	The	object
may	not	contain	cyclic	references.

delta

function	(a:[]|{},	
										b:[]|{}	
		→	[]|{}

Computes	the	delta	vector	of	two	vectors.

distance

function	(a:[]|{},	
										b:[]|{}	
		→	[]|{}

Computes	the	distance	of	two	vectors.

div

function	(number,number)	
									→	number

Integer	division	operation

empty

function	(array|object|string)	
									→	boolean

Checks	if	an	object,	string,	or	array	is	empty	({}	[]	"")

AgentJS	and	AIOS

11	/	44

equal

function	(number|string|array|object,	
										number|string|array|object)	
									→	boolean

Tests	equality	of	numbers,	strings,	arrays,	and	objects.

filter

function	(array|object,	
										function	(@element,@index?)	
																			→	boolean)	
									→	array|object

Filter	operation	for	arrays	and	objects.

flatten

function	('a	array	array,	
										level?:number)	
									→	'a	array

Flattens	 elements	 of	 an	 array	 up	 to	 specified	 level
(default:1).

head

function	('a	array)	→	'a

Returns	head	(first)	element	of	an	array.

int

function	(number)	→	number

AgentJS	and	AIOS

12	/	44

Returns	integer	number.

isin

function	(array|object,	
										number|string|(number|string)[])	
									→	boolean

Tests	 existence	 of	 an	 element	 in	 an	 array	 or	 object
(attribute).	The	element	can	be	an	array,	too.

iter

function	(array|object,	
										function	(@element,@index?))

Iterator	over	arrays	and	objects.

last

function	(array|object|string)	
									→	'a

Returns	the	last	element	of	an	array,	object,	or	string.

length

function	(array|object|string)	
									→	number

Returns	 length	 of	 an	 array,	 number	 of	 attributed	 of	 an
object,	or	length	of	string.

map

AgentJS	and	AIOS

13	/	44

function	(array|object,	
										function	(@element,@index?)	→	*|none)	
									→	array|object

Map	 and	 filter	 operation	 for	 arrays	 and	 objects.	 If	 the
user	function	returns	undefined	the	element	is	discarded.

matrix

function	(@cols,	
										@rows,	
										init:number|function)	
									→	[][]

Creates	a	matrix	(array	of	arrays).

max

function	(a	:number|array,	
										b?:number)	
									→	number

Returns	 largest	 number	 from	 two	 numbers	 or	 array	 of
numbers.

min

function	(a	:number|array,	
										b?:number)	
									→	number

Returns	smallest	number	from	two	numbers	or	from	array	of
numbers.

neg

AgentJS	and	AIOS

14	/	44

function	(number|array|object)	
									→	number|array|object

Returns	negative	number,	negative	elements	of	an	array	or
object	of	numbers.

random

function	(a	:number|array|object,	
										b?:number,	frac?:number)	
									→	number|*

Returns	a	random	number	within	the	interval	[*a*,*b*]	or
an	element	from	an	array	or	object.	The	optional	fraction
parameter	specifies	the	rounding	precision	(frac=1	return
integer	numbers).

reduce

function	('a	array,	
										function	('a,'a)	→	'b)	
									→	'b

Reduces	elements	of	an	array	to	a	compound	value	using	a
user	function.

reverse

function	('a	array|string)	
									→	'a	array|string

Reverses	elements	of	an	array	or	string.

sort

AgentJS	and	AIOS

15	/	44

function	('a	array,	
										function	(@element1,@element2)	→	number)	
									→	'a	array

Sorts	 an	 array	 with	 a	 user	 function	 returning	 {-1,0,1}
numbers.	 Descending	 order	 is	 reached	 if	 a<b	 return	 a
positive	value,	otherwise	if	a	negative	value	is	returned
an	ascending	order	is	reached.

sum

function	('a	array|object,	
										map?:function	(e)	→	'b)	
									→	('a|'b)	number

Returns	 the	 sum	 of	 elements	 of	 an	 array	 or	 attribute
values	 of	 an	 object.	 The	 optional	 user	 mapping	 function
can	be	used	to	return	a	computed	value	for	each	element.

string

function	(*)	→	string

Returns	string	representation	of	the	argument.

tail

function	('a	array)	
									→	'a	array

Returns	tail	(last)	elements	of	array.

zero

function	(number|array|object)	

AgentJS	and	AIOS

16	/	44

									→	boolean

Checks	 if	 a	 number,	 all	 elements	 of	 an	 array	 or	 all
attributes	of	an	object	are	zero.

Examples

this.a=[1,2,3];
this.o={real:2.0,img:3.1};

this.sq	=	function	(objORarray)	{
		var	res=0;
		iter(objORarray,function	(elem,index)	{
				res=res+elem*elem;
		});
		return	res;
}
..
				var	x,y,z;
				x=this.sq(a);	//	x==14
				y=this.sq(o);	//	y==13.61
				z=sum(a);					//	z==6
				if	(zero(this.o))	this.o={real:1.0,img:1.0};
..

Usage	 of	 computational	 functions	 and	 user	 defined
functions	assigned	to	agent	body	variables.

Environment

info

function	(@kind)	→	{}
typeof	@kind	=	'node'	|	'version'	|	'host'

Returns	 environmental	 information.	 Supported	 information
requests	are:

AgentJS	and	AIOS

17	/	44

node
version
host

The	node	information	request	returns:

{id							:	id	string,	
	position	:	{x:number,	y:number},	
	location	:	undefined	|	{lat:number,	lon:number},	
	type					:	string}

The	node	type	is	a	string	identifier	from	the	set:

typeof	@type	=	{'shell',	'webshell',	'relay',	'webapp',	
'mobileapp'}

The	host	information	request	returns	information	about	the
host	platform:

{type:string='node'	|	'browser'}

myClass

function	()	→	string

Returns	the	class	of	the	agent	(if	known).	Same	result	is
returned	by	accessing	the	this.ac	variable.

myNode

function	()	→	string

Returns	the	identity	name	of	the	current	JAM	node.

myParent

AgentJS	and	AIOS

18	/	44

function	()	→	string

Returns	 the	 identity	 name	 of	 the	 parent	 agent	 of	 this
agent	(if	any).

myPosition

function	()
		→	{x:number,y:number}	|
				{	ip:string,	
						gps:{lat:number,	lon:number},	
						geo:{city:string,
											country:string,	
											countryCode:string,
											region:string,
											zip:string}	}

Returns	 the	 position	 of	 the	 current	 node	 (Physical
GPS/Geographical	or	logical	position).

me

function	()	→	string

Returns	the	identity	name	of	this	agent.

clock

function	(ms:boolean)	
									→	number|string

Returns	current	system	clock	in	milliseconds	(ms	argument
is	true)	or	in	time	format	HH:MM:SS.

Tuple	Space

AgentJS	and	AIOS

19	/	44

Tuple	 spaces	 are	 data	 bases	 storing	 vectors	 of	 values.
Each	 tuple	 has	 a	 dimension	 (the	 number	 of	 values)	 and	 a
type	 interface.	 Tuples	 can	 be	 read	 or	 consumed	 by	 using
patterns.	 Patterns	 are	 like	 tuple	 but	 allowing	 wild-card
values	(none).	If	there	is	no	matching	tuple	found	in	the
data	base,	the	agent	is	suspended	until	a	matching	tuple
arrives	 or	 a	 timeout	 occurs	 (by	 using	 the	 try_*
operations).	 Since	 JavaScript	 programs	 cannot	 block,	 a
callback	 function	 has	 to	 be	 provided	 and	 the	 blocking
operation	 must	 be	 placed	 at	 the	 end	 of	 an	 activity	 or
inside	a	scheduling	block.	Commonly	the	first	value	of	a
tuple	(a	string)	is	used	as	a	key,	but	this	is	only	a	weak
constraint	 that	 has	 not	 to	 be	 satisfied.	 If	 the	 first
value	is	a	string	it	is	used	as	a	hash	key	in	the	tuple
data	 base	 speeding	 up	 tuple	 pattern	 matching.	 A	 tuple
space	 has	 a	 linear	 structure	 and	 is	 non-persistent.	 To
support	 complex	 hierarchical	 data	 bases,	 JAM	 provides	 a
SQLite	data	base	server	and	access	to	this	data	base	for
level	 3	 agents	 (see	 section	 [SQL]).	 Tuple	 spaces	 can	 be
mapped	 on	 tables	 in	 this	 SQL	 data	 base	 (by	 tuple	 space
provider	and	consumer	functions	passed	to	JAM).

Types

type	tuple	=	
		(number|string|boolean|
			array|object)	[]
type	pattern	=	
		(number|string|boolean|
			array|object|null)	[]

Examples

![#agentjsts]

out(['MARKING1',1]);
out(['SENSORA',100,true]);
inp(['SENSORA',_,_],function	(tuple)	{
		if	(tuple)	this.s	=tuple[1];
});

AgentJS	and	AIOS

20	/	44

rm(['SENSORA',_,_],true);
try_rd(0,function	(tuple)	{	..	});
ts(['MARKING',_],function	(t)	{	t[1]++	});
alt([
		['SENSORA',_,_],
		['SESNORB',_],
		['EVENT'],
],function	(tuple)	{
				if	(tuple	&&	tuple[0]=='EVENT')	{..}
				else	..
		});

Example	[#agentjsts].	Tuple	Access

Operations

alt1,2,3

function	(pattern	[],	
										callback:function,	
										all?:boolean,	
										tmo?:number)

Selective	 input	 operation	 with	 multiple	 search	 patterns
that	can	have	different	type	signatures	and	arities.	The
first	 tuple	 matching	 one	 of	 the	 pattern	 is	 consumed	 and
passed	 to	 the	 callback	 function.	 If	 there	 are	 multiple
tuples	 matching	 a	 specific	 pattern	 and	 the	 flag	 is	 set
than	all	matching	tuples	are	consumed	and	returned.

collect1,2,3

function	(to:path,	
										pattern)	
									→	number

The	 collect	 operation	 moves	 tuples	 from	 this	 source	 TS

AgentJS	and	AIOS

21	/	44

that	match	template	pattern	into	destination	TS	specified
by	path	to	(a	node	destination).

copyto1,2,3

function	(to:path,	
										pattern)	
									→	number

Copies	all	matching	tuples	form	this	source	TS	to	a	remote
destination	TS	specified	by	path	to	(a	node	destination).

evaluate1,2,3

function	(pattern,	
										callback:function	(tuple|none))	
									→	tuple

Access	an	evaluator	tuple	created	by	a	listen	operation.
The	evaluator	evaluates	the	given	pattern	to	a	tuple	and
passes	 the	 tuple	 back	 to	 the	 callback	 function	 of	 the
requesting	agent.

exists1,2,3

function	(pattern)	→	boolean

Check	if	a	tuple	matches	the	given	patterns.

inp1,2,3

function	(pattern,	
										callback:function(tuple|[]tuple|none),	
										all?:boolean,	
										tmo?:number)

AgentJS	and	AIOS

22	/	44

									→	tuple|tuple[]|none

Consumes	a	tuple	matching	the	given	pattern	that	is	passed
to	 the	 callback	 function.	 If	 there	 are	 multiple	 tuples
matching	a	specific	pattern	and	the	all	flag	is	set	than
all	matching	tuples	(array)	are	consumed	and	returned.	If
there	 is	 no	 matching	 tuple	 and	 tmo	 is	 zero	 (immediate
reply)	or	positive	(timeout)	than	the	callback	handler	is
called	with	a	none	value	argument.

listen1,2,3

function	(pattern,	
										callback:function	(pattern)	→	tuple)

Installs	 a	 tuple	 evaluator	 (active	 tuple)	 that	 can	 be
accessed	by	the	evaluate	operation.

out1,2,3

function	(tuple)

Stores	a	tuple	in	the	data	base.

mark1,2,3

function	(tuple,	
										tmo:number)

Stores	a	tuple	with	a	limited	lifetime	in	the	data	base.

rd1,2,3

function	(pattern,	

AgentJS	and	AIOS

23	/	44

										callback:function(tuple|tuple[]|none),	
										all?:boolean,	
										tmo?:number)
									→	tuple|[]tuple|none

Reads	a	tuple	matching	the	given	pattern	that	is	passed	to
the	 callback	 function.	 If	 there	 are	 multiple	 tuples
matching	a	specific	pattern	and	the	all	flag	is	set	than
all	 matching	 tuples	 (array)	 are	 read.	 If	 there	 is	 no
matching	 tuple	 and	 tmo	 is	 zero	 (immediate	 reply)	 or
positive	 (timeout)	 than	 the	 callback	 handler	 is	 called
with	a	none	value	argument.

rm1,2,3

function	(pattern,	
										all?:boolean)

Removes	 a	 tuple	 or	 if	 the	 all	 flag	 is	 set	 all	 matching
tuples	from	the	data	base.

store1,2,3

function	(to:path,	
										tuple)	
									→	number

Stores	a	tuple	in	a	remote	TS	specified	by	path	to	(a	node
destination).	Returns	number	of	stored	tuples.

ts1,2,3

function	(
		pattern,	
		callback	:	function(tuple)
													→	tuple

AgentJS	and	AIOS

24	/	44

)	→	tuple	|	null
function	(
		pattern,	
		timeout	:	number
)	→	tuple	|	null

Atomic	and	non-blocking	test-and-set	operation	that	can	be
used	 to	 modify	 a	 tuple	 in	 place	 found	 based	 on	 the
provided	pattern.	If	the	second	argument	is	a	number,	the
current	timeout	value	of	a	tuple	is	updated.

alt.try,	inp.try,	rd.try,	evaluate.try1,2,3

function	(tmo:number,	..)	→	*

Try	operation	and	execute	an	alternation,	input,	or	read
operation	 with	 a	 given	 timeout	 (Milliseconds).	 If	 there
was	 no	 matching	 tuple	 found	 and	 the	 timeout	 elapsed	 the
callback	 is	 fired	 with	 a	 null	 argument,	 followed	 by	 the
continuation	 of	 the	 agent	 execution	 with	 the	 next
activity.

rd.try(timout,tuple,function	(t)	{
		if	(t)	this.data=t,log('GOTIT');
		else	log('DONT	GOTIT');
})

Active	Tuples

Passive	 tuples	 are	 produced	 via	 the	 out	 operation	 and
consumed	 via	 the	 rd	 and	 inp	 operations.	 Among	 passive
tuples,	 there	 are	 active	 tuples	 that	 are	 evaluated	 by	 a
consumer	 and	 passed	 back	 to	 the	 original	 producer
(bidirectional	 tuple	 exchange)	 by	 using	 the	 listen	 and
evaluate	operations.
![#agentjsacttup]

AgentJS	and	AIOS

25	/	44

listen(pattern,	function	(tuple)	{
		Modification	of	tuple:	Replace	formal		
		with	actual	parameters
		return	tuple'
})
evaluate(pattern,	function	(tuple)	{
		Process	evaluated	tuple	
})

Definition	[#agentjsacttup]:	Active	Tuple	Template

Signals

Signals	are	used	as	a	low-level	inter-agent	communication.
In	 contrast	 to	 tuple,	 signals	 can	 be	 send	 directly	 to
specific	 agents.	 Although	 there	 are	 remote	 tuple	 space
operations,	 signals	 should	 be	 used	 for	 remote	 agent
communication.	 Signals	 can	 carry	 an	 argument	 (data).	 The
delivery	 of	 signals	 is	 only	 reliable	 if	 the	 source	 and
destination	 agents	 are	 processed	 on	 the	 same	 platform
node.	 If	 the	 destination	 agent	 is	 processed	 on	 a	 remote
platform	 the	 signals	 are	 delivered	 as	 messages	 to	 the
destination	node	along	the	travel	path	of	the	destination
agent.

There	is	no	agent	localisation,	and	only	agent	traces	are
used	 to	 deliver	 a	 signal	 to	 a	 remote	 agent,	 i.e.,	 each
node	remembers	the	direction/link	an	agent	used	to	migrate
to	 another	 node.	 Therefore,	 remote	 signals	 can	 only	 be
send	to	agents	that	were	previously	processed	on	the	node
of	the	source	agent!

To	enable	back	propagation	of	signals,	each	node	remembers
the	 direction/link	 of	 incoming	 signals	 and	 its	 source
agent,	 too.	 The	 entries	 of	 these	 trace	 caches	 have	 a
timeout	and	are	removed	automatically.	Each	time	a	signal
is	propagated	along	the	trace	path	of	an	agent,	the	cache
entries	of	all	path	nodes	are	refreshed.	After	a	timeout
of	a	trace	cache	entry,	signals	cannot	be	delivered	to	an
agent	along	a	path	using	this	node!

A	 signal	 can	 be	 received	 by	 an	 agent	 by	 installing	 a

AgentJS	and	AIOS

26	/	44

signal	handler	in	the	this.on	section	of	the	agent	class.
The	 destination	 agent	 is	 specified	 by	 the	 agent
identifier.	 Usually	 agent	 identifiers	 should	 not	 made	 be
public	 for	 security	 reasons	 (An	 agent	 at	 least	 with
privilege	 level	 1	 can	 control	 another	 agent	 on	 the	 same
node	if	it	knows	its	agent	identifier).	Hence,	signals	are
often	 used	 between	 parent-child	 agents.	 Each	 child	 knows
the	agent	identifier	of	its	parent,	and	vice	versa.

Signals	 should	 carry	 only	 simple	 arguments.	 Objects	 may
not	 contain	 cyclic	 references.	 Complex	 data	 structures
should	only	be	exchanged	between	agents	by	using	the	tuple
space.

Template

The	following	code	template	shows	agent	communication	via
signals	 between	 a	 parent	 and	 its	 created	 child	 agents
(using	 forking).	 The	 child	 agent	 is	 created	 in	 activity
a1.	After	the	agent	process	forking,	both	agents	continue
with	activity	a2.

//	Template
this.child=none;
this.act	=	{
		a1:	function	()	{
				//	Create	child	agent
				this.child=fork();
		}
		a2:	function	()	{
				//	Raise	signal
				if	(this.child)	
						send(this.child,'PARENT','Hello	World');
		}
}
this.trans	=	{
				a1:a2
}
//	Installation	of	signal	handlers
this.on	:	{
		'PARENT'	:	function	(arg,from)	{

AgentJS	and	AIOS

27	/	44

				log('Got	message	'+arg+'	from	'+from);
		},	..
}

Types

//	Type	definitions
type	aid	=	string
type	range	=	
				hops:number	|
				region:{dx:number,dy:number,..}

Operations

send1,2,3

function	(to:aid,	
										sig:string|number,	
										arg?:*)

Sends	a	signal	@sig	(string	or	number)	to	an	agent	with
identification	string	@to	with	an	optional	argument	@arg.

broadcast1,2,3

function	(class:string,	
										range,	
										@sig,	
										@arg?)

Broadcasts	 a	 signal	 to	 multiple	 agents	 of	 class	 @class
with	the	specified	range.

sendto1,2,3

AgentJS	and	AIOS

28	/	44

function	(to:dir,	
										sig:string|number,	
										arg?:*)

Sends	a	signal	@sig	(string	or	number)	to	a	remote	node
specified	by	@to	with	an	optional	argument	@arg.	If	there
is	 an	 agent	 on	 the	 remote	 node	 handling	 the	 specific
signal	it	will	be	passed	to	the	listening	agent.

sleep

function	(tmo:number)

Suspends	an	agent	for	a	specific	time	(milli	seconds).	If
@tmo	 is	 zero,	 the	 agent	 is	 suspended	 until	 it	 will	 be
woken	up	by	another	agent	using	the	wakeup	operation	or
by	the	same	agent	via	a	signal	handler.

wakeup

function	(aid?:string)

Wakes	 up	 a	 sleeping	 agent.	 Can	 be	 called	 from	 within	 an
signal	 handler.	 If	@aid	 is	 undefined,	 the	 agent	 calling
wakeup	will	be	woken	up	(if	suspended).

timer.add

function	(tmo:number,	
										sig:string,	
										arg:*,	
										repeat:boolean)	
									→	string

Adds	 and	 start	 a	 new	 timer	 that	 raises	 the	 signal	 sig
after	timeout.	Returns	a	timer	identifier.

AgentJS	and	AIOS

29	/	44

timer.delete

function	(sig:string)

Deletes	a	timer	referenced	by	the	identifier	returned	from
timer.add.

Agent	Control

Agents	 can	 be	 instantiated	 from	 an	 agent	 class	 template
(previously	loaded	into	the	platform)	by	using	the	create
operation	 with	 parameter	 initialisation.	 Agent	 class
parameters	 must	 be	 passed	 immediately	 to	 agent	 body
variables.	 They	 are	 not	 accessible	 during	 run-time!The
agent	class	ac	must	be	loaded	previously	as	an	agent	class
template	 and	 is	 provided	 by	 the	 platform.	 Alternatively,
the	agent	class	can	be	a	sub-class	of	the	current	agent.

Furthermore,	agents	can	be	forked	from	the	current	agent
process	 inheriting	 the	 entire	 data	 and	 control	 state
including	 the	 current	 agent	 behaviour	 (activities,
transitions,	 ..).	 Specific	 body	 variables	 of	 the	 forked
agent	can	be	overridden	by	the	attributes	of	the	settings
object	 passed	 on	 the	 fork	 call.	 Forking	 discards	 all
current	scheduling	blocks,	in	contrast	to	migration!

A	 newly	 created	 agent	 is	 identified	 by	 a	 (node)	 unique
identifier	string	(commonly	8	characters)	that	is	returned
by	the	create	and	fork	operations.

At	 least	 privilege	 level	 1	 is	 required	 to	 use	 these
operations.

Agent	Creation	Operations

create1,2,3

function	(ac:string,	
										[arg1,arg2,..],	
										level?:number)	

AgentJS	and	AIOS

30	/	44

									→	aid
function	(ac:string,	
										{arg1:*,arg2:*,..},	
										level?:number)	
									→	aid

Creates	a	new	agent	from	agent	class	ac	with	the	given	set
of	 arguments.	 The	 agent	 constructor	 function	 ac	 must	 be
available	 on	 the	 platform.	 Agent	 class	 arguments	 are
passed	 to	 agent	 class	 parameters	 during	 the	 creation	 or
forking	 process.	 Arguments	 can	 either	 be	 passed	 in	 an
array	matching	parameters	in	the	order	they	are	defined,
or	 by	 using	 an	 argument	 object	 with	 arbitrary	 parameter
order.	Optionally	the	privilege	level	of	the	new	agent	can
be	specified,	otherwise	the	new	agent	inherits	the	level
of	the	creating	agent.	The	highest	level	is	limited	to	the
level	of	the	creating	agent!	The	initial	activity	executed
by	the	newly	created	agent	is	specified	by	the	constructor
function	in	the	next	attribute.

fork1,2,3

function	(parameter:{var1:*,	var2:*,..},	
										level?:number)	
									→	aid

Forks	a	copy	of	the	current	agent	process	inheriting	the
entire	data	and	control	state	of	the	parent	agent.	The	new
child	 agent	 can	 reference	 its	 parent	 agent	 by	 the
this.parent	 attribute	 or	 by	 using	 the	 myParent
function.	The	child	agent	body	variables	var1,	var2,	..
passed	by	the	parameters	object	are	overridden	on	forking
with	the	given	values.	Note	that	only	existing	agent	body
variables	(with	a	defined	value)	can	be	overriden.

Note	 that	 the	 original	 agent	 class	 parameters	 cannot	 be
accessed	after	the	creation	of	an	agent.	The	next	activity
executed	after	the	fork	is	either	computed	by	the	current
transition	 entry	 or	 by	 a	 next	 variable	 override	 by	 the
parameter	object.

AgentJS	and	AIOS

31	/	44

Example

id	=	create('explorer',{dir:DIR.NORTH,radius:1});
child	=	fork({x:10,y:20});
kill(child);

Among	 the	 creation	 and	 destruction	 of	 agents,	 the	 agent
behaviour	can	be	modified	by	agents	by	adding,	deleting,
or	updating	of	transitions	and	activities	(modification	of
the	 ATG).	 Only	 whole	 activities	 can	 only	 be	 changed	 and
not	code	parts.	There	are	two	objects	accessible	by	agents
providing	 modification	 operations:	 act	 and	 trans.	 ATG
transformations	 can	 be	 temporarily,	 e.g.,	 used	 to	 create
child	agents	with	different	or	reduced	behaviour.

Agent	Behaviour	Operations

act.add

function	(act:string,	
										code:function)

Adds	 a	 new	 activity	 @act	 with	 the	 given	 code	 to	 the
current	agent	object.

act.delete

function	(act:string)

Deletes	an	activity	@act	from	the	current	agent	object.

act.update

function	(act:string,	
										code:function)

AgentJS	and	AIOS

32	/	44

Updates	 code	 of	 activity	 @act	 of	 the	 current	 agent
object.

trans.add

function	(trans0:string,	
										code:function|string)

Adds	a	new	transition	starting	from	activity	@trans0	with
the	given	code	to	the	current	agent	object.

trans.delete

function	(trans0:string)

Deletes	 a	 transition	 from	 activity	 @trans0	 from	 the
current	agent	object.

trans.update

function	(trans0:string,
										code:function|string)

Updates	code	of	transition	starting	from	activity	@trans0
of	the	current	agent	object.

Example

this.act	=	{
		a1:	function	()	{..},
		a2:	function	()	{
				act.delete(a1);	trans.delete(a1);
				act.add('b1',	function	()	{
						this.sensor=[];	..});
				trans.update(a2,	function	()	{	
						return	this.sensor.length>0?b1:a3	});

AgentJS	and	AIOS

33	/	44

		},
		a3:	..
		..
};
this.trans	=	{
		a1:	a2,
		a2:	a3,
		a3:	..
}

Process	Control

The	main	control	flow	of	and	agent	is	related	to	the	ATG
and	 (conditional)	 transitions	 itself.	 An	 agent	 can	 call
blocking	statements	within	an	activity.	A	blocked	activity
stops	 agent	 execution	 until	 an	 event	 occurs.	 But	 signal
handlers	 can	 be	 still	 executed	 even	 the	 agent	 is	 in	 a
blocked	state.	Among	external	suspend-wakeup	control,	the
agent	 itself	 can	 suspend	 and	 resume	 its	 execution
explicitly	 by	 the	 following	 operations.	 Blocking
statements	may	only	occur	at	the	end	of	an	activity	(or	at
least	 there	 may	 be	 only	 one	 blocking	 statement	 in	 one
activity).

sleep

function	(millisec?:number)

Suspends	agent	execution	(current	activity)	for	a	specific
amount	 of	 time	 (milli	 seconds	 resolution)	 or	 until	 a
wakeup	 operation	 (from	 within	 a	 signal	 handler)	 is
executed.

wakeup

function	(process?)

Wakes	up	a	sleeping	(suspended)	agent	process.

AgentJS	and	AIOS

34	/	44

Agent	Mobility

Agent	processes	can	migrate	to	another	physical	or	logical
node	by	transferring	its	current	control	and	data	snapshot
via	 a	 message	 over	 a	 transport	 channel.	 The	 destination
(specified	 by	 the	 transport	 channel)	 is	 selected	 by	 a
direction	DIR.	If	the	moveto	operation	is	executed	at	the
end	 of	 an	 activity	 or	 the	 current	 scheduling	 block	 is
empty	after	migration,	the	next	activity	is	computed	after
migration	on	the	new	JAM	node.

If	 a	 migration	 to	 a	 specific	 host	 or	 in	 a	 specific
direction	is	not	possible,	a	MOVE	exception	is	thrown.

Types

enum	DIR	=	{
		NORTH	,	SOUTH	,	WEST	,	EAST	,
		LEFT	,	RIGHT	,	UP	,	DOWN,
		ORIGIN	,
		NW	,	NE	,	SW	,	SE	,												
		PATH	(path:string),
		IP			(ip:string),												
		NODE	(node:string),												
		CAP		(cap:string|capability),
		North	(string),
		South	(string),
		West	(string),
		East	(string),
}	:	dir

Operations

moveto1,2

function	(to:dir)

Migrates	 current	 agent	 to	 a	 new	 node	 specified	 by	 the

AgentJS	and	AIOS

35	/	44

destination	@to.	If	the	node	is	not	reachable	the	agent	is
killed	if	it	not	cathes	the	MOVE	exception.

opposite

function	(dir)	→	dir

Returns	 the	 opposite	 (back)	 direction	 (if	 any)	 of	 the
given	direction.	E.g.,	opposite	of	NORTH	is	SOUTH.	In	the
case	of	IP	links	and	migration	the	opposite	operation	can
return	the	IP	address	or	the	node	name	of	the	last	node,
i.e.,	 opposite(DIR.IP())	 and	 opposite(DIR.NODE()),
respectively.

link

function	(dir)	
		→	boolean|string|string[]

Tests	a	link	direction.	Should	be	used	prior	to	migration
(migration	 with	 not	 available	 link	 direction	 causes	 an
exception).	In	the	case	of	multi-cast	links	(e.g.,	IP),	a
list	 of	 connected/reachable	 IPs	 (routes,	 using	 pattern
DIR.IP('*'))	 or	 Nodes	 (using	 pattern	 DIR.IP('%'))	 is
returned.

Reachable	nodes	from	unicast	IP-P2P	links	can	be	asked	by
using	 the	 direction	 constructors	 DIR.North('%')	 and	 so
on.

Examples

//	Activity	in	agent	class	template
move	:	function	()	{
		if	(this.verbose>0)	log('Move	->	'+this.dir);
		if	(!this.goback)	this.backdir=opposite(this.dir);
		switch	(this.dir)	{
				case	DIR.NORTH:	this.delta.y--;	break;

AgentJS	and	AIOS

36	/	44

				case	DIR.SOUTH:	this.delta.y++;	break;
				case	DIR.WEST:		this.delta.x--;	break;
				case	DIR.EAST:		this.delta.x++;	break;
		}
		if	(this.dir!=DIR.ORIGIN	&&	link(this.dir))	{
				this.hop++;
				moveto(this.dir);				
		}
}

The	 possible	 migration	 directions	 depend	 on	 the	 network
toplogy	 and	 the	 ports	 available	 on	 the	 agent's	 current
node	and	the	established	links	between	nodes.

IP	(UDP/TCP/HTTP)	links	can	be	established	between	generic
bidirectional	 (multicast)	 IP	 ports	 with
(DIR.IP("ip:ipport"))	 or	 between	 unidirectional	 (uni-
cast)	 ports,	 e.g.,	 DIR.NORTH("ip:ipport")),	 commonly
connected	to	a	South	port	on	the	remote	endpoint	given	by
DIR.SOUTH("ip:ipport")),	respectively.
Generic	 IP	 ports	 can	 spawn	 arbitrary	 mesh	 grids.
Alternatively,	a	destination	node	can	be	specified,	i.e.,
DIR.NODE(nodeid).
After	 an	 agent	 migration,	 the	 agent	 can	 retrieve	 its
backpropagation	 direction,	 i.e.,	 last	 node	 identifier	 or
IP	 address	 by	 using	 the	 opposite(DIR.NODE())	 and
opposite(DIR.IP())	operations,	respectively.

function	mi(dest){
		this.src=null;
		this.dest=dest;
		this.act={
				init:function	()				{	
					log('Starting	on	'+myNode())},
				goto:	function	()			{	
					log('Going	to	'+DIR.print(this.dest));	
					if	(link(this.dest))	moveto(this.dest);	
					else	log('No	route')},
				goback:	function	()	{	

AgentJS	and	AIOS

37	/	44

					this.src=opposite(DIR.NODE());
					log('Going	back	to	'+DIR.print(this.src));	
					moveto(this.src)},
				end:	function	()				{	
					log('End');	kill()	}
		}
		this.trans={
				init:goto,	goto:goback,	goback:end
		}
		this.next=init
}

Example.	Agent	forward	and	backward	migration	between	two
nodes

Security

Changing	 of	 agent	 privilege	 levels	 and	 roles	 requires
secured	 capabilities.	 Furthermore,	 agents	 can	 use
capability	 protection	 to	 ensure	 authentication	 and
authorisation	of	operations.

negotiate

function	(resource:string,	
										value:*,	
										capability?)	
									→	boolean

Negotiates	 an	 agent	 constraint	 parameter.	 Level	 0	 and	 1
agents	 require	 a	 valid	 access	 capability	 with	 sufficient
rights	(0x80).	The	LEVEL	resource	is	the	agent	privilege
level.	Supported	resources	are:

typeof
@resource='CPU'|'SCHED'|'MEM'|'TS'|'AGENT'|'LEVEL'

privilege

AgentJS	and	AIOS

38	/	44

function	()	
		→	number={0,1,2,3}

Returns	the	current	privilege	level	of	the	agent

Capability

type	port	=	string[6]
type	privat	=	{
				prv_obj	:	number[0..65535],
				prv_rights	:	number[0..255],
				prv_rand	:	port
}
type	capability	=	{
				cap_port:	port,
				cap_prv:	privat
}

Operations

The	 following	 capability	 and	 security	 functions	 are
available.

Port

function	(port_vals:	numner	[])	
									→	port

Creates	a	port	(if	port_vals	is	undefined	a	null	port	is
returned).

Port.toString

function	(port)	→	string

Returns	 a	 string	 representation	 of	 a	 port

AgentJS	and	AIOS

39	/	44

(XX:XX:XX:XX:XX)

Port.ofString

function	(string)	→	port

Returns	 a	 port	 from	 a	 string	 representation
(XX:XX:XX:XX:XX)

Port.unique

function	()	→	port

Returns	a	fresh	unique	port	from	a	random	generator.

Private

function	(obj:number,	
										rights:number,	
										rand:port)	
									→	privat

Creates	 a	 private	 object	 (if	 obj	 is	 undefined	 a	 null
private	object	is	returned).

Private.toString

function	(privat)	→	string

Returns	 a	 string	 representation	 of	 a	 private	 object
(obj(rights)[XX:XX:XX:XX:XX])

Private.ofString

AgentJS	and	AIOS

40	/	44

function	(string)	→	privat

Returns	 a	 private	 object	 from	 a	 string	 representation
(obj(rights)[XX:XX:XX:XX:XX])

Capability

function	(port,	privat)	
		→	capability

Creates	a	capability	object	(if	port	is	undefined	a	null
capability	object	is	returned).

Capability.toString

function	(capability)	→	string

Returns	a	string	representation	of	a	capability	object:

(`[XX:XX:XX:XX:XX:XX]obj(rights)[XX:XX:XX:XX:XX]`)

Capability.ofString

function	(string)	→	capability

Returns	a	capability	object	from	a	string	representation:

(`[XX:XX:XX:XX:XX:XX]obj(rights)[XX:XX:XX:XX:XX]`)

Connectivity

connectTo3

AgentJS	and	AIOS

41	/	44

function	(dir:dir,	
										@options)	→	link

Connects	 this	 node	 to	 another	 node	 using	 a	 virtual	 or
physical	 channel	 link.	 Common	 ports	 are	 non-directed
multi-cast	IP	ports.	E.g.,	for	connecting	a	node	IP	port
to	 another	 IP	 port	 of	 a	 remote	 agent	 platform,	 the
direction	 argument	 is	 DIR.IP("<ipaddr>:<ipport>")	 or
by	 using	 the	 remote	 node	 name	 DIR.NODE(<nodename>).
Directional	 ports	 (supporting	 uni-cast	 P2P	 links	 only)
like	 DIR.NORTH	 can	 be	 connected	 to	 another	 directional
port	 by	 using	 the	 geometric	 opposite	 direction	 (in	 this
example	 using	 DIR.SOUTH	 as	 destination).	 A	 different
situation	occurs	if	a	directional	port	is	established	by
IP	communication	(with	an	IP	address	and	unique	IP	port).
In	this	case	the	source	port	has	to	be	specified	(!)	with
the	 destination	 IP	 as	 an	 argument,	 e.g.,	 DIR.NORTH("
<ipaddr>:<ipport>").

Scheduling

There	 are	 AgentJS	 operations	 that	 can	 block	 the	 agent
processing,	 i.e.,	 suspend	 the	 agent	 process	 and
synchronising	with	events.	But	the	JavaScript	programming
model	 does	 not	 support	 code	 blocking.	 For	 this	 reason,
agent	 processing	 can	 only	 be	 suspended	 in	 transitions
between	activity	(i.e.,	the	activity	is	suspended,	not	the
statement).	 Blocking	 AgentJS/AIOS	 statements	 (e.g.,
sleep,	 inp,	 ..)	 have	 to	 be	 placed	 at	 the	 end	 of	 an
activity	that	is	the	only	scheduling	point.	And	there	may
be	only	one	blocking	statement	in	an	activity.	To	support
scheduling	 of	 a	 sequence	 of	 blocking	 statements,	 a
scheduling	block	can	be	defined	within	an	agent	activity
(but	not	within	a	transition	that	may	not	block).

B

function(block:function	[])

Defines	 a	 scheduling	 block	 that	 is	 executed	 after	 the

AgentJS	and	AIOS

42	/	44

current	 activity	 defining	 the	 block	 has	 terminated.	 Each
element	of	the	function	array	is	treated	as	an	anonymous
(sub-)activity	and	may	contain	a	blocking	statement.

I

function	(object,	
										next:function,	
										block:function	[],	
										finalize:function)

Iterates	 over	 object	 or	 array	 and	 applies	 the	 function
block	to	each	element.

L

function	(init:function,	
										cond:function,	
										next:function,	
										block:function]})

Loop	block	iteration	with	initialisation,	conditional,	and
next	computation	function.

SQL

Level	 3	 (stationary)	 agents	 can	 access	 or	 create	 SQLite
data	 bases.	 Requires	 either	 a	 native	 sqlite3	 plug-in
(embedded	already	in	jx+	and	pl3,	node.js	requires	loading
of	 an	 external	 native	 module),	 or	 a	 pure	 JavaScript
implementation	of	the	sqlite3	data	base	(default	in	JAM,
relies	on	emscripten	C2JS	cross	compilation).

Operations

db.Database3

function	(options?:{mode:"r"	|	"r+"	|	"w+"})	

AgentJS	and	AIOS

43	/	44

									→	sqldb

Creates	a	new	data	base	or	opens	an	existing	from	a	file.
A	 volatile	 data	 base	 can	 be	 created	 in	 memory	 by
specifying	a	:memory:	file	path.

sqldb.createMatrix

method	(matname:string,	
										header:string	|	number	|	boolean	[],	
										callback?:function)	
									→	boolean

Creates	a	new	numeric	matrix	in	the	data	base.	The	header
argument	provides	the	type	interface	for	all	rows.

sqldb.createTable

method	(tblname:string,	
								header:{},	
								callback?:function)	
							→	boolean

Creates	 a	 new	 data	 table	 in	 the	 data	 base.	 The	 header
object	specifies	the	column	names.

sqldb.init

method	()

Initialize	the	SQL	data	base	and	start	server.

sqldb.insertMatrix

method	(mat:string,	

AgentJS	and	AIOS

44	/	44

										row:[],	
										callback?:function)	→	boolean

Insert	a	new	row	in	an	already	created	matrix

sqldb.insertTable

method	(tbl:string,	
								row:[]|{},	
								callback?:function)	
							→	boolean

Insert	a	new	row	in	an	already	created	table

sqldb.readMatrix

method	(mat:string,	
								callback?:function)	
							→	[][]|none

Read	entire	matrix

sqldb.readTable

method	(tbl:string,	
								callback?:function)	
							→	{}[]|none

Read	entire	table

Meta	Data

Revision:	15/02/2020
Author:	Stefan	Bosse

