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Abstract: Materials Informatics addresses commonly the design of new materials using
advanced algorithms and methods from computer science like Machine Learning and Data
Mining. Ongoing miniaturization of computers down to the micro-scale-level enables the in-
tegration of computing in structures and materials that can be understand as Materials In-
formatics from another point of view. There are two major application classes: Smart
Sensorial Materials and Smart Adaptive Materials. The latter class is considered in this
work by combining self-organizing and adaptive Multi-agent Systems with materials posing
changeable material properties like stiffness by actuators. It is assumed that the computa-
tional part of this micro-scale Cyber-Physical-System is entirely integrated in the material
or structure as a  distributed computer composed of a network of low-resource computers.
Each node is connected to sensors and actuators. Actually only macroscopic systems can
be realized. Therefore a multi-domain simulation combining computational and physical
simulation is used to demonstrate the approach and to evaluate self-adaptive algorithms. 

1. Introduction

Load-bearing structures are typically designed towards relevant load cases assum-
ing static shape and fixed sets of materials properties decided upon during design and
materials selection. New technologies enabling the design of structures that could
change local properties in service in response to load change could raise additional
weight saving potentials, thus supporting lightweight design and sustainability. Materi-
als with such capabilities must necessarily be composite in the sense of a
heterogeneous build-up, exhibiting, e.g., an architecture consisting of networks with
numerous active cells providing sensing, signal and data processing, communication,
and actuation/stimulation capability [1] forming Adaptronic Structures [2]. One exam-
ple for such a material is a special class of polymers being capable to change their
elasticity based on the influence of optical, thermo, or electrical fields.  One concern
regarding active smart cellular structures is the correlated and self-organizing control
of cells' responses, and the underlying informational organization providing robust-
ness and real-time capabilities. 

We suggest a hybrid approach that combines mobile and reactive self-organizing
Multi-agent Systems (MAS) [3] processed within the material and Machine Learning..
The goal of the MAS is basically solving a minimization problem, but with an incom-
plete (partially unknown) world model The minimization function relies on unreliable
and noisy sensor input data. In it, the MAS' task is to analyze loading situations based
on sensor data and negotiate matching spatial redistributions of material properties
like elastic modulus to achieve higher-level optimization aims like a minimum of the
total strain energy within the structure, or a reduction of peak stress levels. The asso-
ciated Machine Learning approach (not considered in this work) would be employed to
recognise loading situations for which optimized solutions exist and in such cases to
adapt the MAS system to directly enforce the respective property distribution. Further-
more, reinforcement learning can improve the overall response of the system under
osse et. al - 1 - 2018
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varying environmental conditions and to find an optimal minimization solution. In the
present study, a proof of concept of the approach is presented which combines finite
element methods (FEM), Multi-body physics (mass-spring model), and MAS simula-
tion, with the former primarily taking the place of the physical structure. 

FEM simulations are used to investigate suitable minimization approaches on algo-
rithmic level and for off-line training of the MAS prior to its deployment in the real or
simulated structure. We provide a multi-domain simulation framework. In contrast, a
Multi-body physics model provides a simplified model for the MAS simulation and
evaluation with real-time resolution composing the adaptive material of non-deform-
able mass nodes connected by adaptive springs (variable stiffness and damping
parameters).

The integration of computation into materials as another view of Materials Informat-
ics is an enabling technology among materials with controllable properties for the
design of future smart materials and structures. Integration of computation introduces
hard constraints: Low Size (<1mm3); Low-Power (<1mW); Unreliability; and no main-
tenance inside. We developed agent processing platforms that are capable to be
integrated in materials. The suitability of the ICT and the structure adaptability
approaches are evaluated with a case study.

2. Smart Materials: Fusion of Sensorial- and Adaptive Materials

Any real world load-bearing structure may see different scenarios including misuse,
which might be impossible to capture/define in the design stage. Such unforeseen
loads may in the worst case lead to immediate failure - in other cases, they might just
wear out a structure, causing it to fail prematurely and/or in places determined by
unexpected local load histories. A smart adaptive material is capable of adjusting its
mechanical characteristics - like stiffness - to external loads could actively manage
this local load history. It could protect areas already worn out and distribute loads to
others instead. 

In our understanding, a smart material provides the following major features:

1. Perception using various kinds of sensors, e.g., measuring of strain, displace-
ment, temperature, pressure, forces;

2. Changing of local material and structure properties by actuators, e.g., stiffness
or damping variation;

3. Integrated Information and Communication technologies (ICT);
4. Distributed Approach: Local sensor processing and actuator control - Global

cooperation and coordination.

The general model of a smart adaptive material is shown in Fig. 1. It is assumed
that the smart material consists of volume elements (bounded regions of the material)
that are connected with neighbourhood elements via links. The links should provide
some kind of sensing (e.g., measuring the strain or displacement along the link main
axis) and some kind of material or structure control providing a controllable actuator
(e.g., modifying the stiffness of the link). A link can be a discrete part or a continuous
region of the material. A set of actuators is connected to each node. Two nodes share
an actuator (e.g., a damped spring).
osse et. al - 2 - 2018
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Figure 1. (Left) General architecture of a Sensorial- and Adaptive Material = Smart Mate-
rial (Right) Functional Decomposition: Sensing, Acting, Processing  Data + Instruction
Streams

Each element contains an embedded computer that is considered as a node in a
mesh-grid communication network. Each node provides some kind of data processing
(processor or digital logic RTL), data and program memory, communication, energy
supply and energy management. Since the distributed sensing and control of the
material should be performed by an agent-based approach each node have to provide
an agent processing platform (APP). Agents have to access sensors and actuators by
an hardware abstraction layer (HAL), optimally provided by the APP.

It is assumed that the nodes are organized in an ad-hoc way. Technical failures of
single nodes are considered as the normal case that may not effect the operation of
the smart material satisfying some global objective function. That means a self-orga-
nizing and self-adaptive approach with respect to the connectivity structure has to be
used to created some kind of a holonic system and is the first level of intelligence in a
smart system. 

3. Algorithms

There are different optimization algorithms that are evaluated in this work: (1)
Global Optimization; (2) Segmented Optimization; (3) Neighbourhood Optimization,
summarized in Tab. 1.

The last two ones are suitable for distributed processing performing exploration,
negotiation, characterized by self-* features. That means there are multiple instances
operating on locally bounded data but with global objectives.

There is a set of observation variables: Strain , Stress , and the strain energy U
finally computed, which is an objective variable, too. The optimization variable is the
stiffness of elements , which is used to minimize the strain energy, stress, or strain.
I.e., the optimization (objective) function is: minU(,) with (e), (e). .
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Table 1. Different optimization algorithms (simplified), with U: Strain energy; : Strain; : Stress; xi: 
observation variable of i-th node (element), x: Some observation variable; X: Some accumu-
lated observation variable;  ri: Optimization ratio parameter for i-th node, |X|: Cardinality of a 
set X, D: Some discretization function;  si: Stiffness of i-th node/element, [s0,s1]: Limits of stiff-
ness, [r0,r1]: Limits of optimization parameter, kx: Some problem specific mapping and scaling 
function with weight factor w;  |pos1-pos2|=1: Neighbourhood relationship of elements or 
segments 

The basic principle of optimization uses a ratio parameter r based on the relation of
observation variables (either , , or U) to a spatially extended ensemble value of this
variable (mean). The ratio parameter is applied to the stiffness variables of elements
of the material/structure. In Tab.1 there are two different example functions kU

1  and
kU

2  shown that compute the actual ratio parameter using the strain energy U(=x).
There is a set of all nodes: N, a set of all segments grouping nodes: S , and segments
with a sub-set of nodes: SN. The segmented algorithm performs modification of ele-
ments partitioned in segments based on locally bounded data. The neighbourhood
algorithm performs element modification between two neighbour nodes only (point-to-
point). 

4. Agents: The Computational Model

As already outlined, centralized sensor processing and actuator control is not appli-
cable to the proposed smart structure and material model due to scaling and
efficiency reasons. The resource constraints prohibit the deployment of conventional
data processing and communication architectures. Additionally, for robustness and
flexibility reasons it is desirable to decouple hardware and software entirely. The
agent’s computational and communication model provides such required decoupling.
Agents are characterized by its loosely coupling to the underlying agent processing
platform (APP), their capability to cooperate and co-ordinate, mobility (of agent pro-
cesses), and finally to compose self-organizing and self-adaptive systems. The
decomposition of a complex large-scale problem into multiple small low-complex enti-
ties is ideally reflected by the agent model. The behaviour model of the agents used in
this work is reactive and is related with the Dynamic Activity-Transition Graph (DATG)
model that can be implemented on various platforms [5][6]. 

Global Algorithm 

do with x  {,,U}

 X:=0; nN do X := X + xn
 X := X/|N|

 nN do

  rn := kx(xn/X, sn) 

  sn := sn * rn

until |Err| < Err0

kU
1 :(q,s)  if q*w[r0,r1]  

 s[s0,s1] then 1 else 

 elsif r*w<r0 then r0 else r1

kU
2 :(q,s)  if s[s0,s1] then  

 1 elsif q*w[r0,r1] then q*w 

 elsif r*w<r0 then r0 else r1

Segmented Algorithm

do with x  {,,U}

 SiS do
  Xs:=0;

  nSi do Xs := Xs + xn
  Xs,i := Xs,i / |Si|    
  nSi do
   if mSj | m=nji then 
    rn := kx(xn/Xs,i, sn)

   else

    rn := kx(xn/(Xs,i|Xs,j),sn)

   sn := sn * rn

until |Err| < Err0

Neighbourhood Algorithm

do

 {ni,nj  N | ij 

  |pos(ni)‐pos(nj)|=1} do

  if ui < uj 

     si‐s > s0 

     sj+s < s1 then

    si := si ‐ s

    sj := sj + s

  end if

always  
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Agent Processing Platform: The choice of a suitable APP (details can be found in
[6]) is actually still critical due to the hard resource constraints. The JAM JavaScript
approach used in this work cannot actually scaled towards micro level (only macro
level is supported) due to the JS Virtual Machine resource requirements (C>100MIPS,
M>16MB). For micro level applications, a FORTH stack processor approach is avail-
able (AFVM, AgentFORTH), although the currently available sub-micro computers still
not support this approach fully (but close enough as outlined in the next section,
C>1MIPS, M>100kB). Both platforms are compatible on a meta operational level sup-
porting the same agent behaviour and met programming model (AAPL [5]) that
enables the combined deployment in heterogeneous networks.

Multi-agent System: The MAS is com-
posed of different agents. Each node is
equipped with a stationary (non mobile)
node management agent performing
sensor processing, distribution, and
actuator control (here by controlling the
stiffness of spring-like node interconnec-
tions). A broker agent performs
modifications of the actuators, here the
stiffness (see Fig. 2). 

Figure 2. Principle agent actions: (Top, left)
Springs and sensors under node control (Top,
right) Sensor data distribution to neighbour
nodes by remote tuple access (Bottom) Stiffness
negotiation and swapping between neighbour
nodes by broker agents

5. Hardware Architectures and Technologies

The underlying hardware components depend on the geometrical scaling level:
Micro (Material) or macro (Structure) level. The macro level includes robotic struc-
tures. The following discussion shows that the ICT and sensor parts are already
existing, see Tab. 2, enabling material integration [7]. The actuators modifying mate-
rial or structure properties are still in an early technological state. In the simulation
model used in this work parameterizable damped springs are assumed. Some poly-
mers are suitable for this approach. There are different sensors: Strain gauge,
displacement, temperature. Networks are arranged in 3D mesh-grids consisting of
nodes connected with up to six neighbour nodes

The ICT on micro level assumes 1mm3 SoC computers, about 10MIPS, 100kB
RAM, 100kB ROM, Serial Links; and on macro level computers of size 10cm2 are
assumed, providing about 1000MIPS, 512MB RAM, 4GB ROM, WLAN; Ethernet,
USB. The agent framework uses either a JavaScript VM (Macro Level) suitable for
Embedded Computers, Mobile Devices, PC, Server, Cloud or the AgentFORTH Pro-
cessor (Micro level) suitable for 1mm2 SoC Microchips. Communication is performed
wired or wireless via serial links (electrical, optical, radio-wave), with about 100kB/s-
1MB/s bandwidth.
osse et. al - 5 - 2018
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Integrating computation in materials and structures requires a down-scaling of
established algorithms, computer architectures, and co-ordination principles. A mobile
computer equipped with an Intel i5-2520M and 4GB DRAM requires roughly A=150
(CPU) + 500 (DRAM) mm2=650mm2 chip area, delivering C=50000 MIPS computing
power, but demanding about 35(CPU)+5(DRAM)=40W electrical power. Mid-scale
computers, e.g., smart phones, are equipped with low-power devices, e.g., an ARM
Cortex A9 delivering C=7500 MIPS (@ 1.5GHz), requiring only A=7mm2 chip area
and P=2W power. A normalized computing power efficiency of a computer (con-
sidering only the data processing unit) can be defined by =C/(AP), and a relative
down-scaling ratio factor is given by s=1/2=C1A2P2/(C2A1P1). A scaling factor µ 1
is desired. The down-scaling from an Intel i5 to an ARM Cortex is expressed in a scal-
ing factor of about 50. Material-integrated computing systems limit the size of a
computer to roughly 1mm2 chip area to reduce the mechanical impact of electronic
components on the structure. An ATMEL ATtiny 20 micro-controller delivers
C=12MIPS and requiring A=1mm2 and P=20mW. Compared with an i5 this gives a
scaling factor of s=63. New trends in microelectronics pose 3D structuring of elec-
tronic devices (e.g., Micro Mote M3), increasing the computational power and memory
storage multiple times. The functional layer of a silicon die has a width about 10m
(e.g., extracted by chip thinning), delivering up to 1000 MIPS/mm2 or 250MBit/mm3

assuming a simplified functional-interconnect-isolation layer sandwich structure. 

Table 2. Comparison of different ICT Hardware Platforms (Sub-micro computers) suitable for Smart 
Materials compared with a smart phone system

Property \ Platform Michigan Micro 

Mote (M3 ) [4]

ELM System 

[4]

Atmel Tiny 20 Freescale KL03 ARM Cortex 

Smart Phone

Processor Arm Cortex M0 C8051F990 (SL) AVR Arm Cotex  M0+ Arm Cortex A9

Clock 740kHz max. 32kHz - 48MHz 1GHz

CPU Chip Area 0.1mm2 9mm2 1mm2 4mm2 7mm2

RAM/ROM 3-4kB 0.5kB/2-8kB - 2kB/40kB 512MB/4GB

Sensors Temperature - - - Temperature, 
Light, Sound, 
Video, Accelera-
tion, 3D Position, 
GPS, Magnetic, 
Air pressure 

Communication 900MHz radio, 
optical

optical electrical - 3G/4G, WLAN, 
USB, Bluetooth, 
NFC

Harvester/Battery Solar cell/Thin film Solar cell/Coin - - -

Power Consumption 70W / CPU 160W / CPU 20mW 3mW @ 48MHz 100mW avg., 2W 
peak @ 1.5GHz

Manufacturing process 180nm CMOS - - - 40nm CMOS

Package Wire bonded Sili-
con Stack

PCB Single Chip Single Chip PCB

Computing Eff.  150 0.02 0.6 4.0 0.53
osse et. al - 6 - 2018
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The M3 Micro Mote delivers the best computing efficiency, followed by the Frees-
cale KL03 (but lacking energy, sensors, and communication modules).

6. Software Model

Multi-agent systems forming the distributed computational model offering co-operat-
ing agents. Agents are mobile processes that can migrate between network nodes of
the material/structure and between inside and outside (Internet). Self-organizing and
self-adapting systems (SoS) offer a divide&conquer decomposition of the global opti-
mization problem in a distributed system with multiple processing instances operating
each on locally bounded data. SoS is implemented by cooperating and co-ordinating
agents. The JavaScript Agent Machine (JAM) is used for the processing of agents.
JAM is implemented entirely in JavaScript and therefore portable; providing an exten-
sive agent API with modules for shared database access (Tuple spaces, SQL), Digital
Signal Processing (DSP), Machine Learning (ML). The ML module offers different
models and algorithms: Decision Tree Learner, Artificial Neural Networks, and many
more, integrated in JAM. Numeric frameworks are provided either by Matlab or are
integrated in JAM. Used phys. simulation tools are: FEM: Abaqus, MBP: CANNON.

7. Multi-* Simulation

The design and technological implementation of smart adaptive materials is a chal-
lenge. Fundamental concepts has to be proven before any real system can be
developed. Due to the strong coupling of sensing, reactive control, and information
processing a multi-domain and multi-scale simulation has to be performed.

Figure 3. The entire simulation environment. (Top) FEM and Numeric using Abaqus and
Matlab (Bottom) Multi-body Physics and MAS using the monolithic SEJAM2 simulator
(Right) Different Optimization Algorithm Classes
osse et. al - 7 - 2018



Proc. of the SSI 2018

Stefan B
Fig. 3 shows the entire simulation environment and the data flow consisting of: The
Simulation Environment for JAM (SEJAM), a 3D multi-body physics engine CANNON,
FEM analysis using Abaqus, and numerical processing with Matlab.

Two different mechanical models and solvers are used:

1. Finite Elements Mechanics (FEM); and 
2. Multi-body Physics (MBP, based on coupled spring-mass networks).

The second model is closer to the proposed computational mesh-grid node network
architecture and structures on macro level, whereby the first model is better related to
materials on micro level. Based on these two mechanical models two different compu-
tational frameworks performing applying structure/material optimization are used.

FEM-NUM: Finite Element Analysis is used to develop and evaluate optimization
algorithms performing. e.g.,  the minimization of a target function numerical, e.g.,
reducing the total strain energy, local strain, or inner force peaks.  FEM analysis is
stationary, i.e., no swinging or oscillation of the structure under test is considered, and
a FEM simulation iteration ends with a stationary state of the structure. Algorithms
operating on global (centralized) and local data (distributed) are investigated using
FEM simulation and Matlab performing the reactive computational part of the
algorithms.

MBP-MAS: Simulation of Multi Body Physics in combination with MAS is used to
investigate and evaluate the computational and coordination model proposed in this
work (details in [6]). In contrast to static FEM analysis the MBP simulation is dynamic
and provides real-time resolution behaviour of structures. I.e., the MAS interacts with
non-stationary states of the structures (swinging, oscillation, ..), too, which is closer to
real-world interaction. The MAS implements the algorithms investigated in prior FEM
analysis.

One major difference between the FEM-NUM and the MBP-MAS approach effects
the sensor processing. The nearly real-time resolution MBP-MAS approach performs
sensor distribution by MAS communication that introduces different time delays effect-
ing the optimization algorithms and their outcome. Additionally, the MAS operates
event-based leading to varying responses to a sensor stimulus as a result of structure
dynamics. 

8. Experimental Results

Two different use cases were evaluated: (1) A beam using the FEM-NUM
approach; (2) A plate using the MBP-MAS approach. Some selected results are
shown in Fig. 4 comparing the outcome of different observation variables (strain
energy U and strain ) for the the non-optimized and the optimized structure using dif-
ferent algorithms. In most cases an improvement about 30-40% can be achieved. The
iterative global and segmented algorithms require less than 10 iterations to satisfy
given error conditions (difference between target and actual state of the structure).

From a mechanical point of view, a reduction in total strain energy equals an
increased structural stiffness. In practical applications of the concept, additional
boundary conditions and side aspects need to be taken into account, like the effect of
stiffness modification on ductility, damage tolerance  or fatigue strength. 
osse et. al - 8 - 2018
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Figure 4. Simulation results show the optimization of strain energy U, maximum and mini-
mum strain  using different algorithms.(a,b): Beam, FEM+NUM; (c): Plate, MBP+MAS

Besides, additional optimization aims may be focussed on: Imagine e.g. a damaged
structure in which a crack or hole leads to local stress concentrations - these could be
alleviated by a stiffness adaptation aimed e.g. at levelling out stress and/or limiting
stress gradients.

9. Conclusion

Combining materials posing adaptive properties (e.g., based on polymers) with self-
organizing and self-adaptive computational agents can enable the design of smart
materials and structures of the future. Among controllable material properties, the
integration of computation within materials is an enabling technology and a challenge
to be solved on multiple scales.

A multi-domain and multi-scale simulation framework offers a testbed for the design
and evaluation of new optimization algorithms under computational, communication,
and technical constraints with real-time resolution. Different proposed optimization
algorithms could be evaluated and showed a significant minimization of strain and
strain energy of structures under varying load conditions.
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